Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Oct 26 2023 08:42:14
%S 1,8,3,32,5,64,35,512,63,1024,231,4096,429,8192,6435,131072,12155,
%T 262144,46189,1048576,88179,2097152,676039,16777216,1300075,33554432,
%U 5014575,134217728,9694845,268435456,300540195
%N Numerator of average distance traveled by n-dimensional fly.
%C The average distance is actually d(n) = 2*n!!/(n+1)!! if n is odd, and d(n) = (1*Pi)*4*n!!/(n+1)!! if n is even. So a(n) = numerator(d(n)) if n is odd and a(n) = numerator(Pi*d(n)) if n is even. - _Michel Marcus_, May 24 2013
%D S. Janson, On the traveling fly problem, Graph Theory Notes of New York, Vol. XXXI, 17, 1996.
%H S. Janson, <a href="http://www2.math.uu.se/~svante/papers/sj114.pdf">On the traveling fly problem</a>.
%o (PARI) a(n) = {if (n % 2, eo = 2, eo = 4); numerator(eo*prod(i=0, floor((n-1)/2), n-2*i)/prod(i=0, floor(n/2), n+1-2*i));} \\ _Michel Marcus_, May 24 2013
%Y Cf. A004735.
%K nonn,frac
%O 1,2
%A _N. J. A. Sloane_