login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213838
Rectangular array: (row n) = b**c, where b(h) = 4*h-3, c(h) = 2*n-3+2*h, n>=1, h>=1, and ** = convolution.
5
1, 8, 3, 29, 20, 5, 72, 59, 32, 7, 145, 128, 89, 44, 9, 256, 235, 184, 119, 56, 11, 413, 388, 325, 240, 149, 68, 13, 624, 595, 520, 415, 296, 179, 80, 15, 897, 864, 777, 652, 505, 352, 209, 92, 17, 1240, 1203, 1104, 959, 784
OFFSET
1,2
COMMENTS
Principal diagonal: A213839.
Antidiagonal sums: A213840.
Row 1, (1,5,9,13,...)**(1,3,5,7,...): A100178.
Row 2, (1,5,9,13,...)**(3,5,7,9,...): (4*k^3 + 9*k^2 - 4*k)/3.
Row 3, (1,5,9,13,...)**(5,7,9,11,...): (4*k^3 + 21*k^2 - 10*k)/3.
For a guide to related arrays, see A212500.
LINKS
FORMULA
T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*(2*n-1 + 4*n*x - (6*n-9)*x^2) and g(x) = (1-x)^4.
EXAMPLE
Northwest corner (the array is read by falling antidiagonals):
1....8....29....72....145
3....20...59....128...235
5....32...89....184...325
7....44...119...240...415
9....56...149...296...505
11...68...179...352...595
MATHEMATICA
b[n_]:=4n-3; c[n_]:=2n-1;
t[n_, k_]:=Sum[b[k-i]c[n+i], {i, 0, k-1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
r[n_]:=Table[t[n, k], {k, 1, 60}] (* A213838 *)
Table[t[n, n], {n, 1, 40}] (* A213839 *)
s[n_]:=Sum[t[i, n+1-i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A213840 *)
CROSSREFS
Cf. A212500.
Sequence in context: A137481 A228886 A182160 * A248294 A370564 A004734
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Jul 05 2012
STATUS
approved