login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004533
Theta series of 12-dimensional unimodular lattice {D_12}^{+}.
3
1, 0, 264, 2048, 7944, 24576, 64416, 135168, 253704, 475136, 825264, 1284096, 1938336, 2973696, 4437312, 6107136, 8118024, 11354112, 15653352, 19802112, 24832944, 32800768, 42517728, 51523584
OFFSET
0,3
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 120.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)
J. H. Conway, A. M. Odlyzko and N. J. A. Sloane, Extremal Self-Dual Lattices Exist Only in Dimensions 1-8, 12, 14, 15, 23 and 24, Mathematika, 25 (1978), 36-43.
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006.
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
G. Nebe and N. J. A. Sloane, Home page for this lattice
FORMULA
Expansion of (theta2(q)^12 + theta3(q)^12 + theta4(q)^12)/2 in powers of q.
EXAMPLE
G.f. = 1 + 264*q^2 + 2048*q^3 + 7944*q^4 + 24576*q^5 + 64416*q^6 + ...
MATHEMATICA
terms = 24; s = (EllipticTheta[2, 0, q]^12 + EllipticTheta[3, 0, q]^12 + EllipticTheta[4, 0, q]^12)/2 + O[q]^terms; CoefficientList[s, q] (* Jean-François Alcover, Jul 05 2017 *)
CROSSREFS
Cf. A000122 (theta_3(q)), A002448 (theta_4(q)), A106212.
Sequence in context: A195672 A123654 A014745 * A231301 A211718 A331769
KEYWORD
nonn
STATUS
approved