login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Theta series of 12-dimensional unimodular lattice {D_12}^{+}.
3

%I #37 Aug 01 2024 23:14:49

%S 1,0,264,2048,7944,24576,64416,135168,253704,475136,825264,1284096,

%T 1938336,2973696,4437312,6107136,8118024,11354112,15653352,19802112,

%U 24832944,32800768,42517728,51523584

%N Theta series of 12-dimensional unimodular lattice {D_12}^{+}.

%D J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 120.

%H Seiichi Manyama, <a href="/A004533/b004533.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from G. C. Greubel)

%H J. H. Conway, A. M. Odlyzko and N. J. A. Sloane, <a href="http://dx.doi.org/10.1112/S0025579300009244">Extremal Self-Dual Lattices Exist Only in Dimensions 1-8, 12, 14, 15, 23 and 24</a>, Mathematika, 25 (1978), 36-43.

%H N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0509316">On the Integrality of n-th Roots of Generating Functions</a>, arXiv:math/0509316 [math.NT], 2005-2006.

%H N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="https://doi.org/10.1016/j.jcta.2006.03.018">On the Integrality of n-th Roots of Generating Functions</a>, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.

%H G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/D12p.html">Home page for this lattice</a>

%F Expansion of (theta2(q)^12 + theta3(q)^12 + theta4(q)^12)/2 in powers of q.

%e G.f. = 1 + 264*q^2 + 2048*q^3 + 7944*q^4 + 24576*q^5 + 64416*q^6 + ...

%t terms = 24; s = (EllipticTheta[2, 0, q]^12 + EllipticTheta[3, 0, q]^12 + EllipticTheta[4, 0, q]^12)/2 + O[q]^terms; CoefficientList[s, q] (* _Jean-François Alcover_, Jul 05 2017 *)

%Y Cf. A000122 (theta_3(q)), A002448 (theta_4(q)), A106212.

%K nonn

%O 0,3

%A _N. J. A. Sloane_