login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004530
Expansion of (theta_2(0, x) + theta_3(0, x) + theta_4(0, x)) / 2 in powers of x^(1/4).
1
1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
0,17
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 120.
LINKS
FORMULA
G.f.: (theta_2(0, x^4) + theta_3(0, x^4) + theta_4(0, x^4)) / 2.
EXAMPLE
G.f. = 1 + x + x^9 + 2*x^16 + x^25 + x^49 + 2*x^64 + x^81 + x^121 + 2*x^144 + x^169 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, x^4] + EllipticTheta[ 3, 0, x^4] + EllipticTheta[4, 0, x^4]) / 2, {x, 0, n}]; (* Michael Somos, Aug 28 2017 *)
a[ n_] := With[{m = Sqrt@n}, Which[ n <= 0, Boole[n == 0], IntegerQ[m] && (Mod[m, 4] != 2), 2 - Mod[m, 2], True, 0]]; (* Michael Somos, Aug 28 2017 *)
PROG
(PARI) {a(n) = my(m); if( n<=0, n==0, issquare(n, &m) && (m%4!=2), 2-m%2, 0)}; /* Michael Somos, Aug 28 2017 */
(PARI) {a(n) = my(A); if(n<0, 0, A = x * O(x^n); polcoeff( x * eta(x^16 + A)^2 / eta(x^8 + A) + (eta(x^8 + A)^5 / (eta(x^4 + A) * eta(x^16 + A))^2 + eta(x^4 + A)^2 / eta(x^8 + A)) / 2, n))}; /* Michael Somos, Aug 28 2017 */
CROSSREFS
Sequence in context: A069849 A138045 A072507 * A368980 A355549 A347438
KEYWORD
nonn
EXTENSIONS
Data section extended up to a(121) by Antti Karttunen, Aug 28 2017
STATUS
approved