OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (eta(q) * eta(q^23))^4 / (eta(q^2) * eta(q^46))^2 in powers of q.
Euler transform of a period 46 sequence.
G.f. is a period 1 Fourier series which satisfies f(-1 / (46 t)) = 368 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A253183.
G.f.: (Sum_{k in Z} q^k^2)^2 * (Sum_{k in Z} q^(23*k^2))^2.
EXAMPLE
G.f. = 1 - 4*q + 4*q^2 + 4*q^4 - 8*q^5 + 4*q^8 - 4*q^9 + 8*q^10 - 8*q^13 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ q] QPochhammer[ q^23])^4 / (QPochhammer[ q^2] QPochhammer[ q^46])^2, {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^23 + A))^4 / (eta(x^2 + A) * eta(x^46 + A))^2, n))};
(PARI) {A253185(n, o=O('x^(n+1)))= polcoeff(((eta('x+o)*eta('x^23+o))^2/(eta('x^2+o)*eta('x^46+o)))^2, n)} \\ Writing the g.f. as a square makes the code more than 2 x faster. Using 'x prevents erroneous results in case x is used elsewhere. - M. F. Hasler, Mar 08 2018
(PARI) A253185_vec(N)={my(q='q+O('q^N)); Vec((eta(q) * eta(q^23))^4 / (eta(q^2) * eta(q^46))^2)} \\ Joerg Arndt, Mar 09 2018
CROSSREFS
KEYWORD
sign,changed
AUTHOR
Michael Somos, Mar 24 2015
STATUS
approved