The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A253186 Number of connected unlabeled multigraphs with 3 vertices and n edges. 18
 0, 0, 1, 2, 3, 4, 6, 7, 9, 11, 13, 15, 18, 20, 23, 26, 29, 32, 36, 39, 43, 47, 51, 55, 60, 64, 69, 74, 79, 84, 90, 95, 101, 107, 113, 119, 126, 132, 139, 146, 153, 160, 168, 175, 183, 191, 199, 207, 216, 224, 233, 242, 251, 260, 270, 279, 289, 299, 309, 319, 330 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS a(n) is also the number of ways to partition n into 2 or 3 parts. a(n) is also the dimension of linear space of three-dimensional 2n-homogeneous polynomial vector fields, which have an octahedral symmetry (for a given representation), which are solenoidal, and which are vector fields on spheres. - Giedrius Alkauskas, Sep 30 2017 Apparently a(n) = A244239(n-6) for n > 4. - Georg Fischer, Oct 09 2018 a(n) is also the number of loopless connected n-regular multigraphs with 4 nodes. - Natan Arie Consigli, Aug 09 2019 a(n) is also the number of inequivalent linear [n, k=2] binary codes without 0 columns (see A034253 for more details). - Petros Hadjicostas, Oct 02 2019 LINKS Danny Rorabaugh, Table of n, a(n) for n = 0..10000 Giedrius Alkauskas, Projective and polynomial superflows. I, arxiv.org/1601.06570 [math.AG], 2017; see Section 5.3. Harald Fripertinger, Isometry Classes of Codes. Harald Fripertinger, Snk2: Number of the isometry classes of all binary (n,k)-codes without zero-columns. [See column k = 2.] H. Fripertinger and A. Kerber, Isometry classes of indecomposable linear codes. In: G. Cohen, M. Giusti, T. Mora (eds), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC 1995, Lect. Notes Comp. Sci. 948 (1995), pp. 194-204. [Here a(n) = S_{n,2,2}.] R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000  [math.CO], 2017; see Eq. (23). Gordon Royle, Small Multigraphs. Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1,-1,1). FORMULA a(n) = A004526(n) + A069905(n). a(n) = floor(n/2) + floor((n^2 + 6)/12). G.f.: x^2*(x^3 - x - 1)/((x - 1)^2*(x^2 - 1)*(x^2 + x + 1)). EXAMPLE On vertex set {a, b, c}, every connected multigraph with n = 5 edges is isomorphic to a multigraph with one of the following a(5) = 4 edge multisets: {ab, ab, ab, ab, ac}, {ab, ab, ab, ac, ac}, {ab, ab, ab, ac, bc}, and {ab, ab, ac, ac, bc}. MATHEMATICA CoefficientList[Series[- x^2 (x^3 - x - 1) / ((1 - x) (1 - x^2) (1 - x^3)), {x, 0, 70}], x] (* Vincenzo Librandi, Mar 24 2015 *) LinearRecurrence[{1, 1, 0, -1, -1, 1}, {0, 0, 1, 2, 3, 4}, 61] (* Robert G. Wilson v, Oct 11 2017 *) a[n_]:=Floor[n/2] + Floor[(n^2 + 6)/12]; Array[a, 70, 0] (* Stefano Spezia, Oct 09 2018 *) PROG (Sage) [floor(n/2) + floor((n^2 + 6)/12) for n in range(70)] (MAGMA) [Floor(n/2) + Floor((n^2 + 6)/12): n in [0..70]]; // Vincenzo Librandi, Mar 24 2015 CROSSREFS Cf. A001399, A003082, A014395, A014396, A014397, A014398, A050535, A076864. Column k = 3 of A191646 and column k = 2 of A034253. First differences of A034198 (excepting the first term). Sequence in context: A064313 A011865 A085680 * A160138 A321195 A249020 Adjacent sequences:  A253183 A253184 A253185 * A253187 A253188 A253189 KEYWORD nonn,easy AUTHOR Danny Rorabaugh, Mar 23 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 12 07:28 EDT 2021. Contains 343821 sequences. (Running on oeis4.)