login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105673
One-half of theta series of square lattice (or half the number of ways of writing n > 0 as a sum of 2 squares), without the constant term, which is 1/2.
5
2, 2, 0, 2, 4, 0, 0, 2, 2, 4, 0, 0, 4, 0, 0, 2, 4, 2, 0, 4, 0, 0, 0, 0, 6, 4, 0, 0, 4, 0, 0, 2, 0, 4, 0, 2, 4, 0, 0, 4, 4, 0, 0, 0, 4, 0, 0, 0, 2, 6, 0, 4, 4, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 2, 8, 0, 0, 4, 0, 0, 0, 2, 4, 4, 0, 0, 0, 0, 0, 4, 2, 4, 0, 0, 8, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 4, 2, 0
OFFSET
1,1
COMMENTS
This is the Jacobi elliptic function K(q)/Pi - 1/2 [see Fine].
REFERENCES
N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; Eq. (34.4).
LINKS
FORMULA
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u-v)^2 - (v-w) * (4*w + 2). - Michael Somos, May 13 2005
a(n) = 2 * A002654(n). - Michael Somos, Jan 25 2017
EXAMPLE
G.f. = 2*q + 2*q^2 + 2*q^4 + 4*q^5 + 2*q^8 + 2*q^9 + 4*q^10 + 4*q^13 + 2*q^16 + ...
MATHEMATICA
CoefficientList[Series[(EllipticTheta[3, 0, x]^2 - 1)/(2 x), {x, 0, 100}], x] (* Jan Mangaldan, Jan 04 2017 *)
a[ n_] := If[ n < 1, 0, SquaresR[ 2, n] / 2]; (* Michael Somos, Jan 25 2017 *)
a[ n_] := If[ n < 1, 0, 2 DivisorSum[ n, KroneckerSymbol[ -4, #] &]]; (* Michael Somos, Jan 25 2017 *)
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^2 - 1) / 2, {q, 0, n}]; (* Michael Somos, Jan 25 2017 *)
PROG
(PARI) qfrep([1, 0; 0, 1], 100)
(PARI) {a(n) = if( n<1, 0, qfrep([1, 0; 0, 1], n)[n])}; /* Michael Somos, May 13 2005 */
(PARI) {a(n) = if( n<1, 0, 2 * sumdiv( n, d, (d%4==1) - (d%4==3)))}; /* Michael Somos, Jan 25 2017 */
CROSSREFS
(Theta_3)^2 is given in A004018.
Equals A004018(n)/2 for n > 0.
Sequence in context: A215976 A141058 A102706 * A259761 A350272 A171933
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 05 2005
STATUS
approved