login
A002079
Number of N-equivalence classes of threshold functions of exactly n variables.
(Formerly M0122 N0049)
7
2, 1, 2, 9, 96, 2690, 226360, 64646855, 68339572672
OFFSET
0,1
REFERENCES
S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 8.
S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Muroga, Saburo, Iwao Toda, and Satoru Takasu, Theory of majority decision elements, Journal of the Franklin Institute 271.5 (1961): 376-418. [Annotated scans of pages 413 and 414 only]
S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825. [Annotated scanned copy]
FORMULA
A002078(n) = Sum_{k=0..n} a(k)*binomial(n,k). A000609(n) = Sum_{k=0..n} a(k)*binomial(n,k)*2^k. - Alastair D. King, Mar 17, 2023.
CROSSREFS
KEYWORD
nonn,more
EXTENSIONS
Better description from Alastair King, Mar 17, 2023.
STATUS
approved