login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A002081
Numbers congruent to {2, 4, 8, 16} (mod 20).
(Formerly M1113 N0426)
4
2, 4, 8, 16, 22, 24, 28, 36, 42, 44, 48, 56, 62, 64, 68, 76, 82, 84, 88, 96, 102, 104, 108, 116, 122, 124, 128, 136, 142, 144, 148, 156, 162, 164, 168, 176, 182, 184, 188, 196, 202, 204, 208, 216, 222, 224, 228, 236, 242, 244, 248, 256, 262, 264, 268, 276, 282
OFFSET
0,1
COMMENTS
First differences are periodic, cf. A000689.
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
C. Babbage, On the Determination of the General Term of a New Class of Infinite Series, Trans. Camb. Phil. Soc., 2 (1827), 217-225 (see p. 220).
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
G.f.: 2*(1+2*x^2+2*x^3)/((1-x)^2*(1+x^2)). - Simon Plouffe
a(n+4) = a(n) + 20 for n > 3. - Reinhard Zumkeller, Sep 15 2011
a(n) = 5*n + (1/2)*(3 + (-1)^n)*(-1)^(n(n+1)/2). - Bruno Berselli, Sep 15 2011
E.g.f.: 2*cos(x) - sin(x) + 5*x*exp(x). - Ilya Gutkovskiy, Aug 17 2016
MAPLE
A002081:=2*(1+2*z**2+2*z**3)/(z**2+1)/(z-1)**2; # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
Flatten[Table[20n + {2, 4, 8, 16}, {n, 0, 14}]] (* Alonso del Arte, Nov 30 2011 *)
LinearRecurrence[{2, -2, 2, -1}, {2, 4, 8, 16}, 57] (* Ray Chandler, Aug 25 2015 *)
Select[Range[300], MemberQ[{2, 4, 8, 16}, Mod[#, 20]]&] (* Harvey P. Dale, Jul 20 2021 *)
PROG
(PARI) a(n) = 5*n + [2, -1, -2, 1][(n%4)+1] \\ Ralf Stephan, Jun 08 2005
(PARI) is(n) = n > 0 && setsearch([2, 4, 8, 16], n%20) > 0 \\ Rick L. Shepherd, Aug 17 2016
(Haskell)
a002081 n = a002081_list
a002081_list = filter ((`elem` [2, 4, 8, 16]) . (`mod` 20)) [1..]
-- Reinhard Zumkeller, Sep 15 2011
CROSSREFS
Sequence in context: A375006 A001856 A328265 * A102039 A045844 A254062
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jul 31 2000
STATUS
approved