login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086382
k divides F(k*n^2+1)-F(k+1) for 1<=k<=a(n) where F(k) is the k-th Fibonacci number.
1
2, 1, 2, 10, 1, 10, 2, 1, 2, 12, 1, 10, 2, 1, 2, 10, 1, 12, 2, 1, 2, 10, 1, 10, 2, 1, 2, 16, 1, 12, 2, 1, 2, 10, 1, 10, 2, 1, 2, 16, 1, 10, 2, 1, 2, 10, 1, 12, 2, 1, 2, 10, 1, 10, 2, 1, 2, 12, 1, 12, 2, 1, 2, 10, 1, 10, 2, 1, 2, 36, 1, 10, 2, 1, 2, 10, 1, 12, 2, 1, 2, 10, 1, 10, 2, 1, 2, 12, 1, 12
OFFSET
2,1
COMMENTS
Record values: a(2) = 2, a(5) = 10, a(11) = 12, a(29) = 16, a(71) = 36, a(3079) = 58. The next record a(n), if any has n > 10^5. - Robert Israel, Oct 14 2024
LINKS
FORMULA
a(3n)=1; a( A047235(n))=2
MAPLE
fibmod:= proc(k, m) uses LinearAlgebra:-Modular;
local M;
M:= Mod(m, <<0, 1>|<1, 1>>, integer[8]);
MatrixPower(m, M, k)[1, 2]
end proc:
f:= proc(n) local k;
for k from 2 do if fibmod(k*n^2+1, k) <> fibmod(k+1, k) then return k-1 fi od
end proc:
map(f, [$2..100]); # Robert Israel, Oct 14 2024
PROG
(PARI) a(n)=if(n<0, 0, m=1; while((fibonacci(m*n^2+1)-fibonacci(m+1))%m==0, m++); m-1)
CROSSREFS
Sequence in context: A006126 A078357 A225432 * A249416 A062345 A077098
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Sep 06 2003
STATUS
approved