Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Oct 14 2024 23:59:47
%S 2,1,2,10,1,10,2,1,2,12,1,10,2,1,2,10,1,12,2,1,2,10,1,10,2,1,2,16,1,
%T 12,2,1,2,10,1,10,2,1,2,16,1,10,2,1,2,10,1,12,2,1,2,10,1,10,2,1,2,12,
%U 1,12,2,1,2,10,1,10,2,1,2,36,1,10,2,1,2,10,1,12,2,1,2,10,1,10,2,1,2,12,1,12
%N k divides F(k*n^2+1)-F(k+1) for 1<=k<=a(n) where F(k) is the k-th Fibonacci number.
%C Record values: a(2) = 2, a(5) = 10, a(11) = 12, a(29) = 16, a(71) = 36, a(3079) = 58. The next record a(n), if any has n > 10^5. - _Robert Israel_, Oct 14 2024
%H Robert Israel, <a href="/A086382/b086382.txt">Table of n, a(n) for n = 2..10000</a>
%F a(3n)=1; a( A047235(n))=2
%p fibmod:= proc(k,m) uses LinearAlgebra:-Modular;
%p local M;
%p M:= Mod(m,<<0,1>|<1,1>>,integer[8]);
%p MatrixPower(m,M,k)[1,2]
%p end proc:
%p f:= proc(n) local k;
%p for k from 2 do if fibmod(k*n^2+1,k) <> fibmod(k+1,k) then return k-1 fi od
%p end proc:
%p map(f, [$2..100]); # _Robert Israel_, Oct 14 2024
%o (PARI) a(n)=if(n<0,0,m=1; while((fibonacci(m*n^2+1)-fibonacci(m+1))%m==0,m++); m-1)
%K nonn
%O 2,1
%A _Benoit Cloitre_, Sep 06 2003