login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086383
Prime terms in the sequence of Pell numbers, A000129.
9
2, 5, 29, 5741, 33461, 44560482149, 1746860020068409, 68480406462161287469, 13558774610046711780701, 4125636888562548868221559797461449, 4760981394323203445293052612223893281
OFFSET
1,1
COMMENTS
Previous Name: Primes found among the denominators of the continued fraction rational approximations to sqrt(2).
See A096650 for the indices. - Jon E. Schoenfield, Jan 25 2017
A056869 is essentially the same sequence. - Jianing Song, Jan 02 2019
LINKS
J. L. Schiffman, Exploring the Fibonacci sequence of order two with CAS technology, Paper C027, Electronic Proceedings of the Twenty-fourth Annual International Conference on Technology in Collegiate Mathematics, Orlando, Florida, March 22-25, 2012. See p. 262. - N. J. A. Sloane, Mar 27 2014
FORMULA
a(n) = A000129(A096650(n)). - Jon E. Schoenfield, Jan 25 2017
a(n) = A056869(n-1), n > 1. - Jianing Song, Jan 02 2019
EXAMPLE
a(1) = 2 = A000129(2), a(2) = 5 = A000129(3), a(3) = 29 = A000129(5), etc. - Zak Seidov, Oct 21 2013 [Corrected by Jianing Song, Jan 02 2019]
MATHEMATICA
Select[Table[ChebyshevU[k, 3]-ChebyshevU[k-1, 3], {k, 0, 50}], PrimeQ] (* Ed Pegg Jr, May 10 2007 *)
Select[Denominator[Convergents[Sqrt[2], 150]], PrimeQ] (* Harvey P. Dale, Dec 19 2012 *)
Select[LinearRecurrence[{2, 1}, {0, 1}, 16], PrimeQ] (* Zak Seidov, Oct 21 2013 *)
PROG
(PARI) \\ Continued fraction rational approximation of numeric constants f. m=steps.
cfracdenomprime(m, f) = { default(realprecision, 3000); cf = vector(m+10); x=f; for(n=0, m, i=floor(x); x=1/(x-i); cf[n+1] = i; ); for(m1=0, m, r=cf[m1+1]; forstep(n=m1, 1, -1, r = 1/r; r+=cf[n]; ); numer=numerator(r); denom=denominator(r); if(ispseudoprime(denom), print1(denom, ", ")); ) }
(GAP) f:=[0, 1];; for n in [3..100] do f[n]:=2*f[n-1]+f[n-2]; od; a:=Filtered(f, IsPrime);; Print(a); # Muniru A Asiru, Jan 03 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Cino Hilliard, Sep 06 2003; corrected Jul 30 2004
EXTENSIONS
Name changed (to a Comments entry from Zak Seidov, Oct 21 2013) by Jon E. Schoenfield, Jan 26 2017
STATUS
approved