The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077425 a(n) == 1 (mod 4) (see A016813), but not a square (i.e., not in A000290). 14
 5, 13, 17, 21, 29, 33, 37, 41, 45, 53, 57, 61, 65, 69, 73, 77, 85, 89, 93, 97, 101, 105, 109, 113, 117, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 173, 177, 181, 185, 189, 193, 197, 201, 205, 209, 213, 217, 221, 229, 233, 237, 241, 245, 249, 253, 257 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The Pell equation x^2 - a(n)*y^2 = +4 has infinitely many (integer) solutions (see A077428 and A078355). These are the odd numbers in A079896. The even ones are 4*A000037. - Wolfdieter Lang, Sep 15 2015 First differences: 8, 4, 4, 8, 4, 4, 4, 4, 8, 4, 4, 4, 4, 4, 4, 8, ... , only 4's and 8's?. - Paul Curtz, Apr 11 2019 Yes. There are only 4's and 8's. Proof: Only multiples of 4 may appear. The 4's correspond to successive composite in A016813, whereas an 8 corresponds to a square. A greater multiple of 4 would imply to have at least 2 consecutive squares in A016813, which is not possible since 2 consecutive squares cannot have a difference of 4. That sequence of 4's and 8's can be obtained with A010052 (without the 1st term) where the 0's are replaced with 4's and 1's replaced with 8's. - Michel Marcus, Apr 16 2019 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 S. R. Finch, Class number theory [Cached copy, with permission of the author] A. M. Legendre, Expression les plus simples des formules Ly^2+Myz+Nz^2 où M est impair pour toutes les valeurs de B = M^2-4LN depuis B=5 jusqu'à B=305, Essai sur la Théorie des Nombres An VI, Table II. [Paul Curtz, Apr 11 2019] MAPLE A077425 := proc(n::integer) local resul, i ; resul := 5 ; i := 1 ; while i < n do resul := resul+4 ; while issqr(resul) do resul := resul+4 ; od ; i:= i+1 ; od ; RETURN(resul) ; end proc: seq(A077425(n), n=1..31) ; # R. J. Mathar, Apr 25 2006 MATHEMATICA Select[Range[5, 300, 4], !IntegerQ[Sqrt[#]]&] (* Harvey P. Dale, Dec 05 2012 *) PROG (PARI) [n | n <- vector(100, n, 4*n+1), !issquare(n)] \\ Charles R Greathouse IV, Mar 11 2014 (PARI) list(lim)=my(v=List()); for(s=2, sqrtint((lim\=1)+1), forstep(n=s^2 + if(s%2, 4, 1), min((s+1)^2-1, lim), 4, listput(v, n))); Vec(v) \\ Charles R Greathouse IV, Nov 04 2021 CROSSREFS Intersection of A016813 and A000037. Cf. A077426, A079896. Sequence in context: A174361 A226165 A166409 * A039955 A213340 A014539 Adjacent sequences: A077422 A077423 A077424 * A077426 A077427 A077428 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Nov 29 2002 EXTENSIONS More terms from Max Alekseyev, Mar 03 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 14:18 EDT 2024. Contains 371870 sequences. (Running on oeis4.)