login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213340
Numbers which are the values of the quadratic polynomial 5+8t+12k+16kt on nonnegative integers.
2
5, 13, 17, 21, 29, 37, 41, 45, 53, 61, 65, 69, 77, 85, 89, 93, 97, 101, 109, 113, 117, 125, 133, 137, 141, 149, 153, 157, 161, 165, 173, 181, 185, 189, 197, 205, 209, 213, 221, 229, 233, 237, 241, 245, 253, 257
OFFSET
1,1
COMMENTS
For all these numbers a(n) we have the following Erdős-Straus decomposition: 4/p = 4/(5+8*t+12*k+16*k*t) = 1/(2*(2*k+1)*(2+3*t+3*k+4*k*t)) + 1/(2+3*t+3*k+4*k*t) + 1/(2*(5+8*t+12*k+16*k*t)*(2*k+1)*(2+3*t+3*k+4*k*t)).
Moreover this sequence is related to irreducible twin Pythagorean triples: the associated Pythagorean triple is [2n(n+1), 2n+1,2n(n+1)+1], where n=2+4t+6k+8kt.
In 1948 Erdős and Straus conjectured that for any positive integer n >= 2 the equation 4/n = 1/x + 1/y +1/z has a solution with positive integers x, y and z (without the additional requirement 0 < x < y < z).
For the solution (x,y,z) having the largest z value, see (A075245, A075246, A075247).
REFERENCES
I. Gueye and M. Mizony, Recent progress about Erdős-Straus conjecture, B SO MA S S, Volume 1, Issue 2, pp. 6-14.
I. Gueye and M. Mizony, Towards the proof of Erdős-Straus conjecture, B SO MA S S, Volume 1, Issue 2, pp. 141-150.
LINKS
P. Erdős, On a Diophantine equation, (Hungarian. Russian, English summaries), Mat. Lapok 1, 1950, pp. 192-210.
M. Mizony and M.-L. Gardes, Sur la conjecture d'Erdős et Straus, see pages 14-17.
Eric Weisstein's World of Mathematics, Twin Pythagorean Triple.
K. Yamamoto, On the Diophantine Equation 4/n=1/x+1/y+1/z, Mem. Fac. Sci. Kyushu U. Ser. A 19, 37-47, 1965.
EXAMPLE
For n=5 the a(5)=29 solutions are {k=0, t=3}, {k=2, t=0}.
MAPLE
G:=(p, d)->4/p = [4*d/(p+d)/(p+1), 4/(p+d), 4*d/(p+d)/(p+1)/p]:
cousin:=proc(p)
local d;
for d from 3 by 4 to 100 do
if ((p+1)/2) mod d=0 and (p+d)*(p+1) mod d=0 then
return([p, G(p, d)]) fi; od;
end:
for k to 20 do cousin(4*k+1) od;
CROSSREFS
Cf. A001844 (centered square numbers: 2n(n+1)+1).
Cf. A005408 (x values), A046092 (y values).
Cf. A195770 (positive integers a for which there is a 1-Pythagorean triple (a,b,c) satisfying a<=b).
A073101 number of solutions (x,y,z) to 4/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z.
Sequence in context: A077425 A039955 A375937 * A014539 A249034 A208883
KEYWORD
nonn
AUTHOR
Michel Mizony, Jun 09 2012
STATUS
approved