login
A375937
Odd numbers which are the largest odd number in their Collatz trajectory.
1
1, 5, 13, 17, 21, 29, 33, 37, 45, 49, 53, 61, 65, 69, 77, 81, 85, 93, 101, 113, 117, 133, 141, 149, 157, 173, 177, 181, 197, 205, 209, 213, 229, 237, 241, 245, 261, 269, 273, 277, 289, 301, 305, 309, 317, 321, 325, 341, 349, 357, 369, 373, 385, 397, 401, 405
OFFSET
1,2
COMMENTS
a(n) == 1 (mod 4) because the trajectory of 4x+3 is (4x+3, 12x+10, 6x+5, ...) and 6x+5 > 4x+3.
FORMULA
a(n) = (A176869(n) - 1) / 3 for n > 1.
EXAMPLE
The odd elements of the Collatz trajectory (3,10,5,16,8,4,2,1) are {3,5,1} with maximum 5 > 3, so 3 is not a term. The odd elements of the Collatz trajectory (13,40,20,10,5,16,8,4,2,1) are {13,5,1} with maximum 13, so 13 is a term.
PROG
(PARI)
makeEntries(count) = {
my(L = List(), k = 1);
while(#L < count,
my(m = k);
while(m > 1 && m <= k,
m = 3*m + 1;
while(m % 2 == 0, m = m / 2);
);
if(m == 1, listput(L, k));
k += 2
);
L
};
print(Vec(makeEntries(56)));
CROSSREFS
Sequence in context: A166409 A077425 A039955 * A213340 A014539 A249034
KEYWORD
nonn
AUTHOR
Markus Sigg, Sep 03 2024
STATUS
approved