login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244599
Least primes x that remain primes for n steps under the transform T(x) as defined in A243993.
1
2, 29, 227, 22807, 86269, 2206031, 668880743, 4208046655963
OFFSET
0,1
COMMENTS
Only primes with most significant digit even.
EXAMPLE
n=0: 2
n=1: 29 -> 11
n=2: 227 -> 499 -> 383
n=3: 22807 -> 40879 -> 48563 -> 23197
n=4: 86269 -> 48857 -> 26321 -> 89533 -> 74861
n=5: 2206031 -> 4266343 -> 6829777 -> 4016443 -> 4170877 -> 5878541
n=6: 668880743 -> 246687179 -> 602458861 -> 626936477 -> 885290143 -> 637191571 -> 908006287
n=7: 4208046655963 -> 6288402104597 -> 8062423149463 -> 8686654533091 -> 4442199863909 -> 8863087492993 -> 6493851311821 -> 321364429037.
MAPLE
with(numtheory);
T:=proc(t) local j, w, x, y; x:=t; y:=[]; while x>0 do
y:=[x mod 10, op(y)]; x:=trunc(x/10); od; w:=(y[nops(y)]+y[1]) mod 10;
x:=0; for j from 1 to nops(y)-1 do x:=x*10+((y[j]+y[j+1]) mod 10); od; x:=x*10+w; end:
P:=proc(q) local a, b, n, v; v:=array(0..50);
for n from 0 to 50 do v[n]:=0; od; v[0]:=2; lprint(0, 2);
for n from 1 by 2 to q do if isprime(n) then b:=-1; a:=n;
while isprime(a) do b:=b+1; a:=T(a); od; if v[b]=0 then
v[b]:=n; lprint(b, n); fi; fi; od; end: P(10^10);
CROSSREFS
Cf. A243993.
Sequence in context: A179024 A179025 A377627 * A261268 A020460 A178000
KEYWORD
nonn,more
AUTHOR
Paolo P. Lava, Jul 01 2014
EXTENSIONS
a(7) from Giovanni Resta, Jul 03 2014
STATUS
approved