The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244596 Decimal expansion of the coefficient D appearing in the asymptotic evaluation of P_a(n), the number of primitive Pythagorean triples whose area does not exceed a given bound n. 0
 2, 9, 7, 4, 6, 1, 5, 5, 2, 9, 8, 1, 2, 6, 0, 1, 8, 8, 9, 7, 1, 4, 6, 2, 4, 0, 2, 2, 7, 0, 1, 4, 7, 6, 7, 9, 8, 3, 2, 8, 4, 7, 0, 5, 4, 2, 2, 9, 5, 5, 1, 1, 9, 6, 7, 2, 9, 6, 7, 1, 7, 3, 8, 8, 4, 0, 1, 9, 8, 2, 4, 7, 7, 9, 3, 1, 0, 5, 0, 5, 0, 4, 1, 8, 4, 7, 9, 9, 6, 7, 4, 2, 4, 2, 2, 8, 0, 1, 4, 5, 0, 7, 4 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.2 Pythagorean Triple Constants, p. 277. LINKS Table of n, a(n) for n=0..102. Eric Weisstein's MathWorld, Primitive Pythagorean Triple FORMULA P_a(n) = C*n^(1/2) - D*n^(1/3) + O(n^(1/4)*log(n)). D = -((1 + 1/2^(1/3))*zeta(1/3)/((1 + 1/4^(1/3))*zeta(4/3))). EXAMPLE 0.2974615529812601889714624022701476798328470542295511967296717388401982... MATHEMATICA -((1 + 1/2^(1/3))*Zeta[1/3]/((1 + 1/4^(1/3))*Zeta[4/3])) // RealDigits[#, 10, 103]& // First CROSSREFS Cf. A242439. Sequence in context: A254140 A200991 A013500 * A309928 A176977 A202473 Adjacent sequences: A244593 A244594 A244595 * A244597 A244598 A244599 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Jul 01 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 4 03:55 EDT 2023. Contains 365872 sequences. (Running on oeis4.)