|
|
A244596
|
|
Decimal expansion of the coefficient D appearing in the asymptotic evaluation of P_a(n), the number of primitive Pythagorean triples whose area does not exceed a given bound n.
|
|
0
|
|
|
2, 9, 7, 4, 6, 1, 5, 5, 2, 9, 8, 1, 2, 6, 0, 1, 8, 8, 9, 7, 1, 4, 6, 2, 4, 0, 2, 2, 7, 0, 1, 4, 7, 6, 7, 9, 8, 3, 2, 8, 4, 7, 0, 5, 4, 2, 2, 9, 5, 5, 1, 1, 9, 6, 7, 2, 9, 6, 7, 1, 7, 3, 8, 8, 4, 0, 1, 9, 8, 2, 4, 7, 7, 9, 3, 1, 0, 5, 0, 5, 0, 4, 1, 8, 4, 7, 9, 9, 6, 7, 4, 2, 4, 2, 2, 8, 0, 1, 4, 5, 0, 7, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
REFERENCES
|
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.2 Pythagorean Triple Constants, p. 277.
|
|
LINKS
|
|
|
FORMULA
|
P_a(n) = C*n^(1/2) - D*n^(1/3) + O(n^(1/4)*log(n)).
D = -((1 + 1/2^(1/3))*zeta(1/3)/((1 + 1/4^(1/3))*zeta(4/3))).
|
|
EXAMPLE
|
0.2974615529812601889714624022701476798328470542295511967296717388401982...
|
|
MATHEMATICA
|
-((1 + 1/2^(1/3))*Zeta[1/3]/((1 + 1/4^(1/3))*Zeta[4/3])) // RealDigits[#, 10, 103]& // First
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|