login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144009
E.g.f. satisfies: A'(x) = (1 + x*A(x))^4 with A(0)=1.
5
1, 1, 4, 20, 144, 1352, 15360, 206688, 3214848, 56694144, 1118486016, 24409113600, 583825803264, 15188350556160, 426989455147008, 12899931159564288, 416802018563850240, 14342136885537472512, 523630043964811247616
OFFSET
0,3
COMMENTS
Compare the definition of the e.g.f. A(x) to the trivial statement:
if F(x) = 1/(1-x) then F'(x) = (1 + x*F(x))^2.
In general, if e.g.f satisfies A'(x) = (1+x*A(x))^p, then a(n) ~ c(p) * d(p)^n * n! / n^(1-1/(p-1)), where c(p) and d(p) are constants independent on n. - Vaclav Kotesovec, Jul 15 2014
LINKS
FORMULA
E.g.f. satisfies: A(x) = 1 + Integral (1 + x*A(x))^4 dx.
a(n) ~ c * n^(n-1/6) / (exp(n) * r^n), where r = 0.475460695778... and c = 2.2399022393... . - Vaclav Kotesovec, Jul 14 2014
MATHEMATICA
n = 18; A = 1+x; Do[A = 1 + Integrate[(1+x*A)^4 + O[x]^n, x], {i, 0, n}]; CoefficientList[A, x]*Range[0, n]! (* Jean-François Alcover, Jul 20 2017, adapted from PARI *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=0, n, A=1+intformal((1+x*A+x*O(x^n))^4)); n!*polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 10 2008
STATUS
approved