login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144011
E.g.f. satisfies: A'(x) = 1/(1 - x*A(x))^2 with A(0)=1.
3
1, 1, 2, 10, 72, 704, 8640, 127968, 2220288, 44179200, 991802880, 24799656960, 683533762560, 20589288993792, 672920058230784, 23717386619136000, 896730039462297600, 36203980633475973120, 1554541449858851143680
OFFSET
0,3
FORMULA
E.g.f. A(x) satisfies: A(x) = 1 + Integral 1/(1 - x*A(x))^2 dx.
E.g.f. A(x) satisfies: x/(x*A(x)-1) = tan(1-A(x)). - Vaclav Kotesovec, Jun 15 2013
a(n) ~ GAMMA(1/3) * n^(n-5/6) * (2+Pi)^(n+1/3) / (3^(1/6) * sqrt(Pi) * exp(n) * 2^(n+5/6)). - Vaclav Kotesovec, Feb 23 2014
MATHEMATICA
nn=10; Flatten[{1, Table[Subscript[c, j]*j!, {j, 1, nn}]/.Solve[Table[SeriesCoefficient[x/(x*(1+Sum[Subscript[c, j]*x^j, {j, 1, nn}])-1), {x, 0, k}]==SeriesCoefficient[Tan[-Sum[Subscript[c, j]*x^j, {j, 1, nn}]], {x, 0, k}], {k, 0, nn}]]}] (* Vaclav Kotesovec, Jun 15 2013 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=0, n, A=1+intformal(1/(1-x*A+x*O(x^n))^2 )); n!*polcoeff(A, n)}
CROSSREFS
Sequence in context: A052555 A204808 A084844 * A238085 A277502 A231039
KEYWORD
nonn,nice
AUTHOR
Paul D. Hanna, Sep 10 2008
STATUS
approved