login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144012
E.g.f. satisfies: A'(x) = 1 + x*A(x)^2 where A(0) = 1.
3
1, 1, 1, 4, 12, 56, 310, 1872, 13804, 110368, 990792, 9816560, 105392056, 1231910208, 15473322592, 208287327136, 2992281160320, 45647837225984, 737580584547424, 12578608722516480, 225799744451927104
OFFSET
0,4
LINKS
FORMULA
E.g.f. satisfies: A(x) = 1 + Integral [1 + x*A(x)^2] dx.
Let r be the radius of convergence of e.g.f. A(x), then: a(n)/n! ~ r^(n+2) where r=0.89757966985304971385345783421642045642527022484..., A(-r)=0.206876159989240..., A'(-r)=0.961585613659124...
r is the root of the equation 2*r^2*Hypergeometric0F1[1/3,-1/(9*r^3)] = Hypergeometric0F1[5/3,-1/(9*r^3)]. - Vaclav Kotesovec, Feb 23 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + x^2/2! + 4*x^3/3! + 12*x^4/4! + 56*x^5/5! +...
A(x)^2 = 1 + 2*x + 4*x^2/2! + 14*x^3/3! + 62*x^4/4! + 312*x^5/5! +...
x*A(x)^2 = x + 4*x^2/2! + 12*x^3/3! + 56*x^4/4! + 310*x^5/5! +...
A'(x) = 1 + x + 4*x^2/2! + 12*x^3/3! + 56*x^4/4! + 310*x^5/5! +...
MATHEMATICA
CoefficientList[Series[-2*(Hypergeometric0F1[2/3, -x^3/9] + x*Hypergeometric0F1[4/3, -x^3/9]) / (-2*Hypergeometric0F1[1/3, -x^3/9] + x^2*Hypergeometric0F1[5/3, -x^3/9]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Dec 21 2013 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=0, n, A=1+intformal(1+x*(A+x*O(x^n))^2)); n!*polcoeff(A, n)}
CROSSREFS
Sequence in context: A243785 A019266 A009114 * A197924 A065125 A208940
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 10 2008
STATUS
approved