login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. satisfies: A'(x) = 1 + x*A(x)^2 where A(0) = 1.
3

%I #11 Feb 25 2014 02:18:41

%S 1,1,1,4,12,56,310,1872,13804,110368,990792,9816560,105392056,

%T 1231910208,15473322592,208287327136,2992281160320,45647837225984,

%U 737580584547424,12578608722516480,225799744451927104

%N E.g.f. satisfies: A'(x) = 1 + x*A(x)^2 where A(0) = 1.

%H Vincenzo Librandi, <a href="/A144012/b144012.txt">Table of n, a(n) for n = 0..200</a>

%F E.g.f. satisfies: A(x) = 1 + Integral [1 + x*A(x)^2] dx.

%F Let r be the radius of convergence of e.g.f. A(x), then: a(n)/n! ~ r^(n+2) where r=0.89757966985304971385345783421642045642527022484..., A(-r)=0.206876159989240..., A'(-r)=0.961585613659124...

%F r is the root of the equation 2*r^2*Hypergeometric0F1[1/3,-1/(9*r^3)] = Hypergeometric0F1[5/3,-1/(9*r^3)]. - _Vaclav Kotesovec_, Feb 23 2014

%e E.g.f.: A(x) = 1 + x + x^2/2! + 4*x^3/3! + 12*x^4/4! + 56*x^5/5! +...

%e A(x)^2 = 1 + 2*x + 4*x^2/2! + 14*x^3/3! + 62*x^4/4! + 312*x^5/5! +...

%e x*A(x)^2 = x + 4*x^2/2! + 12*x^3/3! + 56*x^4/4! + 310*x^5/5! +...

%e A'(x) = 1 + x + 4*x^2/2! + 12*x^3/3! + 56*x^4/4! + 310*x^5/5! +...

%t CoefficientList[Series[-2*(Hypergeometric0F1[2/3,-x^3/9] + x*Hypergeometric0F1[4/3,-x^3/9]) / (-2*Hypergeometric0F1[1/3,-x^3/9] + x^2*Hypergeometric0F1[5/3,-x^3/9]),{x,0,20}],x] * Range[0,20]! (* _Vaclav Kotesovec_, Dec 21 2013 *)

%o (PARI) {a(n)=local(A=1+x); for(i=0, n, A=1+intformal(1+x*(A+x*O(x^n))^2)); n!*polcoeff(A, n)}

%Y Cf. A144013, A144014.

%K nonn

%O 0,4

%A _Paul D. Hanna_, Sep 10 2008