login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A301270
Number of labeled trees on n vertices containing two fixed non-adjacent edges.
0
4, 20, 144, 1372, 16384, 236196, 4000000, 77948684, 1719926784, 42417997492, 1157018619904, 34599023437500, 1125899906842624, 39618312131623748, 1499253470328324096, 60724508119499193196, 2621440000000000000000, 120167769980326767578964, 5829995856912430117421056, 298461883710362842247633948, 16079954871362414694843285504
OFFSET
4,1
FORMULA
a(n) = 0 for n < 4, 4 * n^(n-4) = 4 * A008785(n-4) otherwise.
EXAMPLE
The edges {1,2} and {3,4} can form a tree by being joined by an edge in four ways (two possibilities for each edge).
MATHEMATICA
Array[4 #^(# - 4) &, 21, 4] (* Michael De Vlieger, Mar 19 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Marko Riedel, Mar 17 2018
STATUS
approved