login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301272
Number of derangements of S_n with exactly one peak.
2
0, 0, 0, 1, 6, 33, 152, 663, 2778, 11413, 46332, 186867, 750878, 3011025, 12060480, 48277423, 193186146, 772908429, 3091983236, 12368675691, 49476275622, 197908422985, 791640682440, 3166577409831, 12666340397546, 50665425902853, 202661837829132, 810647630936803
OFFSET
0,5
FORMULA
G.f.: x^3*(2*x^2+1)/((1-4*x)*(x+1)^2*(2*x-1)^2). - Alois P. Heinz, Apr 29 2018
EXAMPLE
a(3) = 1: 231.
a(4) = 6: 2143, 2341, 2413, 3142, 3412, 3421.
MAPLE
a:= n-> floor((<<0|1|0|0|0>, <0|0|1|0|0>, <0|0|0|1|0>, <0|0|0|0|1>,
<16|12|-16|-5|6>>^n. <<1/8, 0, 0, 1, 6>>)[1, 1]):
seq(a(n), n=0..30); # Alois P. Heinz, Apr 29 2018
MATHEMATICA
Join[{0}, LinearRecurrence[{6, -5, -16, 12, 16}, {0, 0, 1, 6, 33}, 30]] (* Jean-François Alcover, May 31 2019 *)
CoefficientList[Series[x^3(2x^2+1)/((1-4x)(x+1)^2(2x-1)^2), {x, 0, 40}], x] (* Harvey P. Dale, Sep 01 2021 *)
PROG
(Python)
def count_peaks(pi):
count = 0
for i in range(i, len(pi)-1):
if pi[i] > pi[i+1] and pi[i] > pi[i-1]:
count += 1
return count
def main(args):
n = int(args[0])
set = {1, 2, ..., n}
drmts = []
for pi in itertools.permutations(set):
drmts.append(pi)
for i in range(n):
if pi[i] == i+1:
drmts.remove(pi)
break
num = 0
for pi in drmts:
if count_peaks(pi) == 1:
num += 1
print('number of 1 peak derangements: ', num)
(PARI) A301272(n)={my(c=0, v, t, ok); for(k=0, n!-1, v=numtoperm(n, k); ok=1; for(i=1, n, if((v[i]==i), ok=0; break)); if(ok, t=0; for(i=2, n-1, if((v[i]>v[i-1])&&(v[i]>v[i+1]), t++; if(t>1, break))); if(t==1, c++))); c} \\ R. J. Cano, Apr 25 2018
(PARI) \\ See Cano link.
CROSSREFS
Column k=1 of A303564.
Sequence in context: A255613 A022730 A266944 * A290921 A240880 A099432
KEYWORD
nonn,easy
AUTHOR
Isabella Huang, Mar 17 2018
EXTENSIONS
a(10)-a(20) from Alois P. Heinz, Apr 25 2018
a(21)-a(27) from Alois P. Heinz, Apr 29 2018
STATUS
approved