login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099432
Convolution of A030195(n) (generalized (3,3)-Fibonacci) with itself.
1
1, 6, 33, 162, 756, 3402, 14931, 64314, 273051, 1145988, 4764744, 19656756, 80561061, 328316814, 1331513397, 5377120038, 21633427836, 86747114430, 346810621815, 1382826606210, 5500378861551, 21830478128136, 86469557676048
OFFSET
0,2
FORMULA
G.f.: 1/(1 - 3*x - 3*x^2)^2.
a(n) = 6*a(n-1) - 3*a(n-2) - 18*a(n-3) - 9*a(n-4). [corrected by Harvey P. Dale, May 20 2011]
a(n) = Sum_{k=0..floor((n+2)/2)} k*binomial(n-k+2, k)*3^(n-k+1).
a(n) = (sqrt(7)*n + 2*sqrt(7) - sqrt(3))*(5*sqrt(7)/98 + sqrt(3)/14)*(3*sqrt(21)/2 + 15/2)^(n/2) + (15/2 - 3*sqrt(21)/2)^(n/2)*(sqrt(7)*n + 2*sqrt(7) + sqrt(3))*(5*sqrt(7)/98 - sqrt(3)/14)*(-1)^n.
MATHEMATICA
LinearRecurrence[{6, -3, -18, -9}, {1, 6, 33, 162}, 30] (* Harvey P. Dale, May 20 2011 *)
CROSSREFS
Cf. A073388.
Sequence in context: A301272 A290921 A240880 * A072260 A281930 A282371
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 15 2004
STATUS
approved