OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (6,-3,-18,-9).
FORMULA
G.f.: 1/(1 - 3*x - 3*x^2)^2.
a(n) = 6*a(n-1) - 3*a(n-2) - 18*a(n-3) - 9*a(n-4). [corrected by Harvey P. Dale, May 20 2011]
a(n) = Sum_{k=0..floor((n+2)/2)} k*binomial(n-k+2, k)*3^(n-k+1).
a(n) = (sqrt(7)*n + 2*sqrt(7) - sqrt(3))*(5*sqrt(7)/98 + sqrt(3)/14)*(3*sqrt(21)/2 + 15/2)^(n/2) + (15/2 - 3*sqrt(21)/2)^(n/2)*(sqrt(7)*n + 2*sqrt(7) + sqrt(3))*(5*sqrt(7)/98 - sqrt(3)/14)*(-1)^n.
MATHEMATICA
LinearRecurrence[{6, -3, -18, -9}, {1, 6, 33, 162}, 30] (* Harvey P. Dale, May 20 2011 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 15 2004
STATUS
approved