OFFSET
0,3
COMMENTS
Inverse binomial transform is (-1)^n * a(n). - Michael Somos, Jun 02 2014
If we concatenate the lexicographically ordered bit strings of length n, then a(n) is the number of times 11 appears as a substring, if overlapping substrings are not considered as being separate. - John M. Campbell, Jan 18 2019
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,3,-4,-4).
FORMULA
G.f.: x^2*(2-x)/(1-x-2*x^2)^2. [Typo corrected by Colin Barker, Jun 16 2012]
a(n) = Sum_{k=0..n} J(n-k)*(2^(k-1) -(-1)^k +0^k/2).
a(n) = Sum_{k=0..n+1} J(n-k)*binomial(n-k+1, k)*binomial(1, (k+1)/2)*(1-(-1)^k)/2.
a(n) = A036289(n)/6 +(-1)^n*n/3. - R. J. Mathar, Sep 21 2012
a(-n) = (-2)^(-n-1) * A193449(n) for all n in Z. - Michael Somos, Jun 02 2014
EXAMPLE
G.f. = 2*x^2 + 3*x^3 + 12*x^4 + 25*x^5 + 66*x^6 + 147*x^7 + 344*x^8 + ...
If we concatenate the lexicographically ordered bit strings of length 4, we obtain the expression 0000000100100011010001010110011110001001101010111100110111101111, and we see that the substring 11 appears a total of a(4) = 12 times, with overlapping substrings not being considered as being separate. - John M. Campbell, Jan 18 2019
MATHEMATICA
CoefficientList[Series[x^2*(2-x)/(1-x-2x^2)^2, {x, 0, 32}], x] (* Michael De Vlieger, Jan 18 2019 *)
PROG
(PARI) {a(n) = if( n>=0, polcoeff( x^2*(2-x)/((1+x)*(1-2*x))^2 + x*O(x^n), n), polcoeff( x*(1-2*x)/((1+x)*(2-x))^2 + x*O(x^-n), -n) )}; /* Michael Somos, Jun 02 2014 */
(Magma) m:=40; R<x>:=PowerSeriesRing(Integers(), m); [0, 0] cat Coefficients(R!( x^2*(2-x)/(1-x-2*x^2)^2 )); // G. C. Greubel, Feb 25 2019
(Sage) (x^2*(2-x)/(1-x-2*x^2)^2).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 25 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 15 2004
STATUS
approved