login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240880 Expansion of g.f.: (-1 + sqrt(1+12*x+48*x^2)) / (6*x). 3
1, 1, -6, 33, -162, 666, -1836, -2079, 79542, -741474, 4907628, -24837030, 82449900, 53319060, -3741922008, 38613958497, -274566158298, 1475669401398, -5211777090564, -2356585871778, 240686500011588, -2593621485808596, 19047621883804056, -105353643788834598 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

This sequence is the member (q=-3) of a class of generalized Catalan numbers (see A000108), with g.f. (1-sqrt(1-q*4*x*(1-(q-1)*x)))/(2*q*x), q<>0.

LINKS

Fung Lam, Table of n, a(n) for n = 0..1000

FORMULA

G.f.: (-1 + sqrt(1+12*x+48*x^2)) / (6*x).

Recurrence: (n+3)*a(n+2)+6*(2*n+3)*a(n+1)+48*n*a(n)=0, a(0)=1, a(1)=1.

Lim sup n->infinity |a(n)|^(1/n) = 4*sqrt(3) = 6.9282... - Vaclav Kotesovec, May 02 2014

a(n) ~ 3^(n/2-1)*4^n / (n^(3/2)*sqrt(Pi)) * (sqrt(3)*cos(5*Pi*n/6) + 3*sin(5*Pi*n/6) - (15*sqrt(3)*cos(5*Pi*n/6) + 9*sin(5*Pi*n/6))/(8*n)). - Vaclav Kotesovec, May 02 2014

CROSSREFS

Cf. A000108, A258723.

Sequence in context: A255613 A022730 A266944 * A099432 A072260 A281930

Adjacent sequences:  A240877 A240878 A240879 * A240881 A240882 A240883

KEYWORD

sign,easy

AUTHOR

Fung Lam, May 01 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 23 08:51 EDT 2017. Contains 289686 sequences.