login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240881
Chebyshev transform of A107841.
1
1, 2, 9, 58, 401, 2952, 22759, 181358, 1481751, 12346102, 104505959, 896170608, 7768885801, 67972510202, 599449125609, 5323095489058, 47555513297801, 427127946025752, 3854618439044959, 34934658168463958, 317834095671077751, 2901725605879035502, 26575914921615695759
OFFSET
0,2
COMMENTS
This is the Chebyshev transform over the positive strip 0<=x<=1. A160852 may be viewed as the Chebyshev transform over the negative strip -1<=x<=0.
FORMULA
G.f.: (1+x+x^2 - sqrt(1-10*x+3*x^2-10*x^3+x^4))/(6*x*(1+x^2)).
G.f.: F(x/(1+x^2)), where F(x) is the g.f. of A107841.
Recurrence: (n+1)*a(n) = (5-n)*a(n-6) + 5*(2*n-7)*a(n-5) + (11-4*n)*a(n-4)
+ 20*(n-2)*a(n-3) + (5-4*n)*a(n-2) + 5*(2*n-1)*a(n-1), n>=6.
a(n) ~ (sqrt(45+20*sqrt(6))/2+sqrt(6)+5/2)^n*sqrt(120-30*sqrt(6)+2*sqrt(30*(6196*sqrt(6)-15159)))/(12*sqrt(Pi*n^3)).
MATHEMATICA
CoefficientList[Series[(1+x+x^2 - Sqrt[1-10*x+3*x^2-10*x^3+x^4])/(6*x*(1+x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 30 2014 *)
PROG
(PARI) x='x+O('x^50); Vec((1+x+x^2 - sqrt(1-10*x+3*x^2-10*x^3+x^4))/(6*x*(1+x^2))) \\ G. C. Greubel, Apr 05 2017
CROSSREFS
Sequence in context: A141787 A377964 A047852 * A224127 A366401 A116867
KEYWORD
nonn,easy
AUTHOR
Fung Lam, Apr 29 2014
STATUS
approved