login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240884
Semiprimes of the form C(n) + T(n) where C(n) and T(n) are the n-th cube and triangular numbers.
5
33, 74, 237, 371, 1055, 1397, 10901, 12443, 30287, 39899, 55613, 80453, 207149, 303041, 360467, 407999, 639797, 1230821, 1650053, 2056511, 2695349, 2873441, 3454427, 3956873, 9823349, 10384103, 13680599, 15844877, 16419449, 20608499, 22705373, 26508143
OFFSET
1,1
COMMENTS
The n-th triangular number T(n) = n/2*(n+1).
All the terms in the sequence, except a(2), are odd.
Semiprimes (biprimes) in the sequence are product of two primes and simultaneously sum of n-th cube & triangular numbers.
LINKS
EXAMPLE
a(1) = 33: 3^3 + 3/2*(3+1) = 33 = 3*11, which is product of two primes and hence semiprime.
a(3) = 237: 6^3 + 6/2*(6+1) = 237 = 3*79, which is product of two primes and hence semiprime.
MAPLE
with(numtheory):KD:= proc() local a, b; a:=(n)^3+n/2*(n+1); b:=bigomega(a); if b=2 then RETURN (a); fi; end: seq(KD(), n=1..500);
MATHEMATICA
KD = {}; Do[t = n^3 + n/2*(n + 1); If[PrimeOmega[t] == 2, AppendTo[KD, t]], {n, 500}]; KD
PROG
(PARI) has(n)=if(n%2, isprime(n) && isprime(n^2+n\2+1), isprime(n/2) && isprime(2*n^2+n+1))
for(n=1, 1e4, if(has(n), print1(n^3+n*(n+1)/2", "))) \\ Charles R Greathouse IV, Aug 25 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
K. D. Bajpai, Apr 14 2014
STATUS
approved