login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Semiprimes of the form C(n) + T(n) where C(n) and T(n) are the n-th cube and triangular numbers.
5

%I #11 Aug 25 2014 16:42:03

%S 33,74,237,371,1055,1397,10901,12443,30287,39899,55613,80453,207149,

%T 303041,360467,407999,639797,1230821,1650053,2056511,2695349,2873441,

%U 3454427,3956873,9823349,10384103,13680599,15844877,16419449,20608499,22705373,26508143

%N Semiprimes of the form C(n) + T(n) where C(n) and T(n) are the n-th cube and triangular numbers.

%C The n-th triangular number T(n) = n/2*(n+1).

%C All the terms in the sequence, except a(2), are odd.

%C Semiprimes (biprimes) in the sequence are product of two primes and simultaneously sum of n-th cube & triangular numbers.

%H K. D. Bajpai, <a href="/A240884/b240884.txt">Table of n, a(n) for n = 1..6556</a>

%e a(1) = 33: 3^3 + 3/2*(3+1) = 33 = 3*11, which is product of two primes and hence semiprime.

%e a(3) = 237: 6^3 + 6/2*(6+1) = 237 = 3*79, which is product of two primes and hence semiprime.

%p with(numtheory):KD:= proc() local a,b; a:=(n)^3+n/2*(n+1);b:=bigomega(a); if b=2 then RETURN (a); fi; end: seq(KD(), n=1..500);

%t KD = {}; Do[t = n^3 + n/2*(n + 1); If[PrimeOmega[t] == 2, AppendTo[KD, t]], {n, 500}]; KD

%o (PARI) has(n)=if(n%2, isprime(n) && isprime(n^2+n\2+1), isprime(n/2) && isprime(2*n^2+n+1))

%o for(n=1,1e4, if(has(n), print1(n^3+n*(n+1)/2", "))) \\ _Charles R Greathouse IV_, Aug 25 2014

%Y Cf. A001358, A005898, A046388.

%K nonn,easy

%O 1,1

%A _K. D. Bajpai_, Apr 14 2014