login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160852
Chebyshev transform of A107841.
2
1, 2, 11, 66, 461, 3448, 27061, 219702, 1829851, 15547142, 134224361, 1174119120, 10383783641, 92691197962, 834047700091, 7557110252538, 68890745834341, 631392034936040, 5814520777199261, 53776065007163886, 499275423496447211
OFFSET
0,2
FORMULA
G.f.: (1+x-x^2-sqrt(1-10*x-x^2+10*x^3+x^4))/(6*x*(1-x^2)).
G.f.: 1/(1-2x-x^2-6x^2/(1-5x-x^2-6x^2/(1-5x-x^2-6x^2/(1-5-x^2-6x^2/(1-... (continued fraction).
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*A107841(n-2*k).
Recurrence: (n+1)*a(n) = (n-5)*a(n-6) + 5*(2*n-7)*a(n-5) - (2*n-7)*a(n-4) - 20*(n-2)*a(n-3) + (2*n-1)*a(n-2) + 5*(2*n-1)*a(n-1). - R. J. Mathar, Jul 24 2012, simplified by Fung Lam, Jan 27 2014
a(n) ~ r*(r+10) * sqrt(10*r^3-2*r^2-30*r+4) / (12 * sqrt(Pi) * n^(3/2) * r^(n+1)), where r = 1 / (5/2 + sqrt(6) + 1/2*sqrt(53+20*sqrt(6))) = 0.100010105114224353... - Vaclav Kotesovec, Feb 27 2014
MATHEMATICA
CoefficientList[Series[(1+x-x^2-Sqrt[1-10x-x^2+10x^3+x^4])/(6x(1-x^2)), {x, 0, 20}], x] (* Harvey P. Dale, Aug 12 2011 *)
PROG
(PARI) x='x+O('x^30); Vec((1+x-x^2-sqrt(1-10*x-x^2+10*x^3+x^4))/(6*x*(1-x^2))) \\ G. C. Greubel, Apr 30 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1+x-x^2-Sqrt(1-10*x-x^2+10*x^3+x^4))/(6*x*(1-x^2)))) // G. C. Greubel, Apr 30 2018
CROSSREFS
Sequence in context: A039632 A143816 A220783 * A185627 A216585 A245277
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 28 2009
STATUS
approved