login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160853
Expansion of (1+147*x+1230*x^2+1925*x^3+754*x^4+67*x^5+x^6)/(1-x)^7.
1
1, 154, 2287, 14735, 61227, 193897, 510420, 1175273, 2445121, 4698328, 8468593, 14482711, 23702459, 37370607, 57061054, 84733089, 122789777, 174140470, 242267443, 331296655, 446072635, 592237493, 776314056, 1005793129
OFFSET
0,2
COMMENTS
Source: the De Loera et al. article and the Haws website listed in A160747.
FORMULA
a(n) = 1 +n*(n+1)*(1375*n^4+4022*n^3+6573*n^2+4582*n+1808)/240. - R. J. Mathar, Sep 17 2011
MAPLE
seq(coeff(series((1+147*x+1230*x^2+1925*x^3+754*x^4+67*x^5+x^6)/(1-x)^7, x, n+1), x, n), n=0..25); # Muniru A Asiru, Apr 29 2018
MATHEMATICA
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 154, 2287, 14735, 61227, 193897, 510420}, 40] (* G. C. Greubel, Apr 28 2018 *)
PROG
(Magma) [1 +n*(n+1)*(1375*n^4+4022*n^3+6573*n^2+4582*n+1808)/240: n in [0..30]]; // Vincenzo Librandi, Sep 20 2011
(PARI) x='x+O('x^30); Vec((1+147*x+1230*x^2+1925*x^3+754*x^4+67*x^5 + x^6)/(1-x)^7) \\ G. C. Greubel, Apr 28 2018
CROSSREFS
Sequence in context: A160863 A160840 A160841 * A235099 A332421 A227977
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 18 2009
STATUS
approved