login
A160854
Expansion of (1+147*x+1098*x^2+1638*x^3+632*x^4+59*x^5+x^6)/(1-x)^7.
1
1, 154, 2155, 13524, 55400, 173911, 455120, 1043547, 2164267, 4148584, 7463281, 12743446, 20828874, 32804045, 50041678, 74249861, 107522757, 152394886, 211898983, 289627432, 389797276, 517318803, 677867708, 877960831, 1125035471
OFFSET
0,2
COMMENTS
Source: the De Loera et al. article and the Haws website listed in A160747.
FORMULA
a(n) = 149*n^6/30 +81*n^5/4 +337*n^4/8 +142*n^3/3 +3529*n^2/120 +107*n/12 +1. - R. J. Mathar, Sep 17 2011
MAPLE
seq(coeff(series((1+147*x+1098*x^2+1638*x^3+632*x^4+59*x^5+x^6)/(1-x)^7, x, n+1), x, n), n=0..25); # Muniru A Asiru, Apr 29 2018
MATHEMATICA
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 154, 2155, 13524, 55400, 173911, 455120}, 30] (* G. C. Greubel, Apr 28 2018 *)
PROG
(Magma) [149*n^6/30 +81*n^5/4 +337*n^4/8 +142*n^3/3 +3529*n^2/120 +107 *n/12 +1: n in [0..30]]; // Vincenzo Librandi, Sep 20 2011
(PARI) x='x+O('x^30); Vec((1+147*x+1098*x^2+1638*x^3+632*x^4+59*x^5 + x^6)/(1-x)^7) \\ G. C. Greubel, Apr 28 2018
CROSSREFS
Sequence in context: A235100 A230804 A200552 * A159639 A160863 A160840
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 18 2009
STATUS
approved