login
Expansion of (1+147*x+1098*x^2+1638*x^3+632*x^4+59*x^5+x^6)/(1-x)^7.
1

%I #20 Sep 08 2022 08:45:45

%S 1,154,2155,13524,55400,173911,455120,1043547,2164267,4148584,7463281,

%T 12743446,20828874,32804045,50041678,74249861,107522757,152394886,

%U 211898983,289627432,389797276,517318803,677867708,877960831,1125035471

%N Expansion of (1+147*x+1098*x^2+1638*x^3+632*x^4+59*x^5+x^6)/(1-x)^7.

%C Source: the De Loera et al. article and the Haws website listed in A160747.

%H Vincenzo Librandi, <a href="/A160854/b160854.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).

%F a(n) = 149*n^6/30 +81*n^5/4 +337*n^4/8 +142*n^3/3 +3529*n^2/120 +107*n/12 +1. - _R. J. Mathar_, Sep 17 2011

%p seq(coeff(series((1+147*x+1098*x^2+1638*x^3+632*x^4+59*x^5+x^6)/(1-x)^7, x,n+1),x,n),n=0..25); # _Muniru A Asiru_, Apr 29 2018

%t LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1, 154, 2155, 13524, 55400, 173911, 455120}, 30] (* _G. C. Greubel_, Apr 28 2018 *)

%o (Magma) [149*n^6/30 +81*n^5/4 +337*n^4/8 +142*n^3/3 +3529*n^2/120 +107 *n/12 +1: n in [0..30]]; // _Vincenzo Librandi_, Sep 20 2011

%o (PARI) x='x+O('x^30); Vec((1+147*x+1098*x^2+1638*x^3+632*x^4+59*x^5 + x^6)/(1-x)^7) \\ _G. C. Greubel_, Apr 28 2018

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Nov 18 2009