login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160855
a(n) is the smallest positive integer not occurring earlier in the sequence such that Sum_{k=1..n} a(k) written in binary contains binary n as a substring.
9
1, 3, 2, 6, 8, 4, 5, 11, 10, 24, 12, 13, 7, 9, 28, 17, 36, 14, 20, 46, 22, 44, 25, 18, 15, 16, 19, 21, 23, 26, 38, 33, 68, 30, 37, 29, 65, 39, 27, 57, 50, 88, 45, 85, 47, 83, 48, 34, 49, 51, 79, 53, 56, 32, 31, 35, 40, 41, 42, 63, 58, 72, 64, 66, 69, 61, 129, 93, 106, 60, 86
OFFSET
1,2
COMMENTS
Is this a permutation of the positive integers?
The smallest number not in {a(n) | n<=8000000} is 5083527. It appears that the quotient (a(1)+...+a(n))/n^2 meanders around between 1/2 (=perfect permutation) and 2/3: at n=8000000 the value is approximately 0.5866 (does it converge? 1/2? Golden ratio?).
The scatterplot of the first 100000 terms (see "graph") has some remarkable features which have not yet been explained. - Leroy Quet, Jul 05 2009
The lines that appear in the scatterplot seem to be related to the position of n in the sum of the first n terms; see colorized scatterplots in the Links section. - Rémy Sigrist, May 08 2017
From Michael De Vlieger, May 09 2017: (Start)
Starting positions of n in Sum_{k=1..n} a(k) written in binary: {1, 1, 1, 2, 1, 1, 1, 3, 2, 4, 3, 1, 1, 1, 5, 3, 2, 4, 3, 5, 4, 5, ...}.
Running total of a(n) in binary: {1, 100, 110, 1100, 10100, 11000, 11101, 101000, 110010, 1001010, 1010110, 1100011, 1101010, 1110011, ...}.
(End)
FORMULA
a(A236341(n)) = n. - Reinhard Zumkeller, Jul 12 2015
EXAMPLE
From Michael De Vlieger, May 09 2017: (Start)
a(1) = 1 since binary n = "1" appears in the binary total of all numbers in the sequence "1" at position 1.
a(2) = 3 since binary n = "10" appears in the binary total of all numbers in the sequence (1 + 3) = "100" starting at position 1.
a(3) = 2 since binary n = "11" appears in the binary total of all numbers in the sequence (1 + 3 + 2) = "110" starting at position 1.
a(4) = 6 since binary n = "100" appears in the binary total of all numbers in the sequence (1 + 3 + 2 + 6) = "1100" starting at position 2.
...
(End)
MATHEMATICA
a = {}; Do[k = 1; While[Or[MemberQ[a, k], SequencePosition[ IntegerDigits[Total@ a + k, 2], #] == {}], k++] &@ IntegerDigits[n, 2]; AppendTo[a, k], {n, 71}]; a (* Michael De Vlieger, May 09 2017, Version 10.1 *)
PROG
(Haskell)
import Data.List (delete)
a160855 n = a160855_list !! (n - 1)
a160855_list = 1 : f 2 1 [2..] where
f x sum zs = g zs where
g (y:ys) = if binSub x (sum + y)
then y : f (x + 1) (sum + y) (delete y zs) else g ys
binSub u = sub where
sub w = mod w m == u || w > u && sub (div w 2)
m = a062383 u
-- Reinhard Zumkeller, Jul 12 2015
CROSSREFS
Cf. A160856.
Cf. A062383, A236341 (putative inverse).
Sequence in context: A209171 A368150 A348686 * A120232 A292961 A019444
KEYWORD
nonn,base,look
AUTHOR
Leroy Quet, May 28 2009
EXTENSIONS
Extended by Ray Chandler, Jun 15 2009
STATUS
approved