login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A019444
a_1, a_2, ..., is a permutation of the positive integers such that the average of each initial segment is an integer, using the greedy algorithm to define a_n.
18
1, 3, 2, 6, 8, 4, 11, 5, 14, 16, 7, 19, 21, 9, 24, 10, 27, 29, 12, 32, 13, 35, 37, 15, 40, 42, 17, 45, 18, 48, 50, 20, 53, 55, 22, 58, 23, 61, 63, 25, 66, 26, 69, 71, 28, 74, 76, 30, 79, 31, 82, 84, 33, 87, 34, 90, 92, 36, 95, 97, 38, 100, 39, 103, 105, 41, 108, 110, 43, 113
OFFSET
1,2
COMMENTS
Self-inverse when considered as a permutation or function, i.e., a(a(n)) = n. - Howard A. Landman, Sep 25 2001
That each initial segment has an integer average is trivially equivalent to the sum of the first n elements always being divisible by n. - Franklin T. Adams-Watters, Jul 07 2014
Also, a lexicographically minimal sequence of distinct positive integers such that all values of a(n)-n are also distinct. - Ivan Neretin, Apr 18 2015
REFERENCES
Muharem Avdispahić and Faruk Zejnulahi, An integer sequence with a divisibility property, Fibonacci Quarterly, Vol. 58:4 (2020), 321-333.
LINKS
Franklin T. Adams-Watters, Table of n, a(n) for n = 1..10000
A. Shapovalov, Problem M1517 (in Russian), Kvant 5 (1995), 20-21. English translation appeared in Quantum problem M185, Sept/October 1996 (beware, file is 75Mb).
The Math Forum, Problem of the Week 818
B. J. Venkatachala, A curious bijection on natural numbers, JIS 12 (2009) 09.8.1.
FORMULA
a(n) = A002251(n-1) + 1. (Corrected by M. F. Hasler, Sep 17 2014)
Let s(n) = (1/n)*Sum_{k=1..n} a(k) = A019446(n). Then if s(n-1) does not occur in a(1),...,a(n-1), a(n) = s(n) = s(n-1); otherwise, a(n) = s(n-1) + n and s(n) = s(n-1) + 1. - Franklin T. Adams-Watters, May 20 2010
Lim_{n->infinity} max(n,a(n))/min(n,a(n)) = phi = A001622. - Stanislav Sykora, Jun 12 2017
MATHEMATICA
a[1]=1; a[n_] := a[n]=Module[{s, v}, s=a/@Range[n-1]; For[v=Mod[ -Plus@@s, n], v<1||MemberQ[s, v], v+=n, Null]; v]
lst = {1}; f[s_List] := Block[{k = 1, len = 1 + Length@ lst, t = Plus @@ lst}, While[ MemberQ[s, k] || Mod[k + t, len] != 0, k++ ]; AppendTo[lst, k]]; Nest[f, lst, 69] (* Robert G. Wilson v, May 17 2010 *)
Fold[Append[#1, #2 Ceiling[#2/GoldenRatio] - Total[#1]] &, {1}, Range[2, 70]] (* Birkas Gyorgy, May 25 2012 *)
PROG
(PARI) al(n)=local(v, s, fnd); v=vector(n); v[1]=s=1; for(k=2, n, fnd=0; for(i=1, k-1, if(v[i]==s, fnd=1; break)); v[k]=if(fnd, s+k, s); s+=fnd); v \\ Franklin T. Adams-Watters, May 20 2010
(PARI) A019444_upto(N, c=0, A=Vec(1, N))={for(n=2, N, A[n]||(#A<A[n]=n+c++)|| A[n+c]=n); A} \\ M. F. Hasler, Nov 27 2019
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
R. K. Guy and Tom Halverson (halverson(AT)macalester.edu)
STATUS
approved