login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160850
Number of lines through at least 2 points of a 10 X n grid of points.
3
0, 1, 102, 203, 370, 563, 836, 1111, 1470, 1855, 2306, 2757, 3298, 3857, 4506, 5159, 5868, 6603, 7428, 8255, 9172, 10105, 11098, 12101, 13194, 14305, 15496, 16697, 17964, 19251, 20628, 21997, 23456, 24941, 26492, 28053, 29688, 31341, 33084
OFFSET
0,3
FORMULA
a(n) = (1/2)*(f(m,n,1) - f(m,n,2)) where f(m,n,k) = Sum((n-|kx|)*(m-|ky|)); -n < kx < n, -m < ky < m, (x,y)=1, m=10.
For another more efficient formula, see Mathematica code below.
Conjectures from Colin Barker, Dec 25 2017: (Start)
G.f.: x*(1 + 102*x + 204*x^2 + 472*x^3 + 766*x^4 + 1205*x^5 + 1571*x^6 + 1999*x^7 + 2188*x^8 + 2334*x^9 + 2168*x^10 + 1959*x^11 + 1531*x^12 + 1165*x^13 + 746*x^14 + 462*x^15 + 214*x^16 + 112*x^17 + 21*x^18 + 10*x^19 + 10*x^20) / ((1 - x)^3*(1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)).
a(n) = -a(n-2) + a(n-5) + a(n-6) + 2*a(n-7) + a(n-8) + a(n-9) - a(n-11) - a(n-12) - 2*a(n-13) - a(n-14) - a(n-15) + a(n-18) + a(n-20) for n>21.
(End)
MATHEMATICA
m=10;
a[0]=0; a[1]=1;
a[2]=m^2+2;
a[3]=2*m^2+3-Mod[m, 2];
a[n_]:=a[n]=2*a[n-1]-a[n-2]+2*p1[m, n]+2*p4[m, n]
p1[m_, n_]:=Sum[p2[m, n, y], {y, 1, m-1}]
p2[m_, n_, y_]:=If[GCD[y, n-1]==1, m-y, 0]
p[i_]:=If[i>0, i, 0]
p2[m_, n_, x_, y_]:=p2[m, n, x, y]=(n-x)*(m-y)-p[n-2*x]*p[m-2*y]
p3[m_, n_, x_, y_]:=p2[m, n, x, y]-2*p2[m, n-1, x, y]+p2[m, n-2, x, y]
p4[m_, n_]:=p4[m, n]=If[Mod[n, 2]==0, 0, p42[m, n]]
p42[m_, n_]:=p42[m, n]=Sum[p43[m, n, y], {y, 1, m-1}]
p43[m_, n_, y_]:=If[GCD[(n-1)/2, y]==1, p3[m, n, (n-1)/2, y], 0]
Table[a[n], {n, 0, 39}]
CROSSREFS
Column k=10 of A295707.
Sequence in context: A044715 A197816 A078787 * A202052 A284450 A173968
KEYWORD
nonn
AUTHOR
Seppo Mustonen, May 28 2009
STATUS
approved