login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A197816
Smallest composite number m such that m and the greatest prime divisor of m begin with n.
2
102, 203, 36, 410, 50, 603, 70, 801, 970, 1010, 110, 1270, 130, 1490, 1510, 1630, 170, 1810, 190, 20030, 2110, 2230, 230, 2410, 2510, 2630, 2710, 2810, 290, 3070, 310, 32030, 3310, 3470, 3530, 3670, 370, 3830, 3970, 4010, 410, 4210, 430, 4430, 4570, 4610, 470
OFFSET
1,1
COMMENTS
A majority of numbers are divisible by 10.
The case m prime gives A062584 (First occurrence of n in the decimal representation of primes).
LINKS
FORMULA
a(n) = 10*A018800(n) for n >= 9. - Robert Israel, Jun 04 2018
EXAMPLE
a(6) = 603 = 3^2*67 => 603 and 67 start with 6.
MAPLE
with(numtheory): for n from 1 to 47 do: l1:=length(n):i:=0:for m from 2 to 100000 while(i=0) do: x:=factorset(m):k:=nops(x):y:=x[k]: l2:=length(m):x1:=floor(m/(10^(l2-l1))): l3:=length(y):x2:=floor(y/(10^(l3-l1))):if x1=n and x2=n and l2>=l1 and l3 >=l1 and type(m, prime)=false then i:=1: printf(`%d, `, m):else fi :od:od:
# Alternative:
f:= proc(n) local d, k, p;
for d from 1 do
for k from 10^d*n to 10^d*(n+1)-1 do
if not isprime(k) then
p:= max(numtheory:-factorset(k));
if p >= n and floor(p/10^(length(p)-length(n))) = n then return k fi
fi od od
end proc:
map(f, [$1..100]); # Robert Israel, Jun 04 2018
CROSSREFS
Sequence in context: A244387 A044334 A044715 * A078787 A160850 A202052
KEYWORD
nonn,base,look
AUTHOR
Michel Lagneau, Oct 18 2011
STATUS
approved