login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest composite number m such that m and the greatest prime divisor of m begin with n.
2

%I #11 Jun 04 2018 17:54:09

%S 102,203,36,410,50,603,70,801,970,1010,110,1270,130,1490,1510,1630,

%T 170,1810,190,20030,2110,2230,230,2410,2510,2630,2710,2810,290,3070,

%U 310,32030,3310,3470,3530,3670,370,3830,3970,4010,410,4210,430,4430,4570,4610,470

%N Smallest composite number m such that m and the greatest prime divisor of m begin with n.

%C A majority of numbers are divisible by 10.

%C The case m prime gives A062584 (First occurrence of n in the decimal representation of primes).

%H Robert Israel, <a href="/A197816/b197816.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = 10*A018800(n) for n >= 9. - _Robert Israel_, Jun 04 2018

%e a(6) = 603 = 3^2*67 => 603 and 67 start with 6.

%p with(numtheory): for n from 1 to 47 do: l1:=length(n):i:=0:for m from 2 to 100000 while(i=0) do: x:=factorset(m):k:=nops(x):y:=x[k]: l2:=length(m):x1:=floor(m/(10^(l2-l1))): l3:=length(y):x2:=floor(y/(10^(l3-l1))):if x1=n and x2=n and l2>=l1 and l3 >=l1 and type(m,prime)=false then i:=1: printf(`%d, `,m):else fi :od:od:

%p # Alternative:

%p f:= proc(n) local d,k,p;

%p for d from 1 do

%p for k from 10^d*n to 10^d*(n+1)-1 do

%p if not isprime(k) then

%p p:= max(numtheory:-factorset(k));

%p if p >= n and floor(p/10^(length(p)-length(n))) = n then return k fi

%p fi od od

%p end proc:

%p map(f, [$1..100]); # _Robert Israel_, Jun 04 2018

%Y Cf. A018800, A062584.

%K nonn,base,look

%O 1,1

%A _Michel Lagneau_, Oct 18 2011