login
A197818
Walsh matrix antidiagonals converted to decimal.
3
1, 3, 5, 15, 17, 51, 93, 255, 257, 771, 1453, 3855, 4593, 13299, 23901, 65535, 65537, 196611, 371373, 983055, 1175281, 3394803, 6103645, 16711935, 16908033, 50593539, 95245741, 252706575, 301011441, 871576563, 1566432605, 4294967295
OFFSET
0,2
COMMENTS
Infinite Walsh matrix with the negative ones replaced by zeros (negated binary Walsh matrix), the antidiagonals read as binary numbers.
This sequence is similar to A001317 (Sierpinski triangle rows converted to decimal). a(n) = A001317(n) iff n=0 or n is an element of A099627.
EXAMPLE
Top left corner of the negated binary Walsh matrix:
1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 1 1 0 0 1
1 1 1 1 0 0 0 0
1 0 1 0 0 1 0 1
1 1 0 0 0 0 1 1
1 0 0 1 0 1 1 0
The antidiagonals in binary and decimal are:
1 = 1
11 = 3
101 = 5
1111 = 15
10001 = 17
110011 = 51
1011101 = 93
11111111 = 255
PROG
(PARI)
N=2^5; /* a power of 2 */
parity(x)= {
my(s=1);
while ( (x>>s), x=bitxor(x, x>>s); s+=s; );
return( bitand(x, 1) );
}
W = matrix(N, N, i, j, if(parity(bitand(i-1, j-1)), 0, 1); );
a(n) = sum(k=0, n, 2^k * W[n-k+1, k+1] );
vector(N, n, a(n-1))
/* Joerg Arndt, Mar 27 2013 */
CROSSREFS
Sequence in context: A045544 A001317 A053576 * A077406 A054432 A016043
KEYWORD
nonn,base
AUTHOR
Tilman Piesk, Oct 18 2011
STATUS
approved