login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of lines through at least 2 points of a 10 X n grid of points.
3

%I #12 Dec 25 2017 11:22:26

%S 0,1,102,203,370,563,836,1111,1470,1855,2306,2757,3298,3857,4506,5159,

%T 5868,6603,7428,8255,9172,10105,11098,12101,13194,14305,15496,16697,

%U 17964,19251,20628,21997,23456,24941,26492,28053,29688,31341,33084

%N Number of lines through at least 2 points of a 10 X n grid of points.

%H Seiichi Manyama, <a href="/A160850/b160850.txt">Table of n, a(n) for n = 0..1000</a>

%H S. Mustonen, <a href="http://www.survo.fi/papers/PointsInGrid.pdf">On lines and their intersection points in a rectangular grid of points</a>

%F a(n) = (1/2)*(f(m,n,1) - f(m,n,2)) where f(m,n,k) = Sum((n-|kx|)*(m-|ky|)); -n < kx < n, -m < ky < m, (x,y)=1, m=10.

%F For another more efficient formula, see Mathematica code below.

%F Conjectures from _Colin Barker_, Dec 25 2017: (Start)

%F G.f.: x*(1 + 102*x + 204*x^2 + 472*x^3 + 766*x^4 + 1205*x^5 + 1571*x^6 + 1999*x^7 + 2188*x^8 + 2334*x^9 + 2168*x^10 + 1959*x^11 + 1531*x^12 + 1165*x^13 + 746*x^14 + 462*x^15 + 214*x^16 + 112*x^17 + 21*x^18 + 10*x^19 + 10*x^20) / ((1 - x)^3*(1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)).

%F a(n) = -a(n-2) + a(n-5) + a(n-6) + 2*a(n-7) + a(n-8) + a(n-9) - a(n-11) - a(n-12) - 2*a(n-13) - a(n-14) - a(n-15) + a(n-18) + a(n-20) for n>21.

%F (End)

%t m=10;

%t a[0]=0; a[1]=1;

%t a[2]=m^2+2;

%t a[3]=2*m^2+3-Mod[m,2];

%t a[n_]:=a[n]=2*a[n-1]-a[n-2]+2*p1[m,n]+2*p4[m,n]

%t p1[m_,n_]:=Sum[p2[m,n,y], {y,1,m-1}]

%t p2[m_,n_,y_]:=If[GCD[y,n-1]==1,m-y,0]

%t p[i_]:=If[i>0,i,0]

%t p2[m_,n_,x_,y_]:=p2[m,n,x,y]=(n-x)*(m-y)-p[n-2*x]*p[m-2*y]

%t p3[m_,n_,x_,y_]:=p2[m,n,x,y]-2*p2[m,n-1,x,y]+p2[m,n-2,x,y]

%t p4[m_,n_]:=p4[m,n]=If[Mod[n,2]==0,0,p42[m,n]]

%t p42[m_,n_]:=p42[m,n]=Sum[p43[m,n,y], {y,1,m-1}]

%t p43[m_,n_,y_]:=If[GCD[(n-1)/2,y]==1,p3[m,n,(n-1)/2,y],0]

%t Table[a[n],{n,0,39}]

%Y Column k=10 of A295707.

%K nonn

%O 0,3

%A _Seppo Mustonen_, May 28 2009