login
A160847
Number of lines through at least 2 points of a 7 X n grid of points.
2
0, 1, 51, 100, 181, 274, 405, 536, 709, 894, 1111, 1330, 1591, 1858, 2167, 2482, 2825, 3180, 3577, 3974, 4413, 4860, 5339, 5824, 6351, 6884, 7455, 8032, 8641, 9262, 9925, 10584, 11285, 11998, 12743, 13494, 14283, 15078, 15915, 16758, 17633, 18516
OFFSET
0,3
FORMULA
a(n) = (1/2)*(f(m,n,1)-f(m,n,2)) where f(m,n,k) = Sum((n - |kx|)*(m - |ky|)); -n < kx <n, -m < ky <m, (x,y)=1, m=7.
For another more efficient formula, see Mathematica code below.
Empirical g.f.: -x*(7*x^14 + 8*x^12 + 43*x^11 + 50*x^10 + 117*x^9 + 135*x^8 + 204*x^7 + 173*x^6 + 211*x^5 + 142*x^4 + 131*x^3 + 50*x^2 + 50*x + 1) / ((x - 1)^3*(x + 1)*(x^2 - x + 1)*(x^2 + 1)*(x^2 + x + 1)*(x^4 + x^3 + x^2 + x + 1)). - Colin Barker, May 24 2015
MATHEMATICA
m=7;
a[0]=0; a[1]=1;
a[2]=m^2+2;
a[3]=2*m^2+3-Mod[m, 2];
a[n_]:=a[n]=2*a[n-1]-a[n-2]+2*p1[m, n]+2*p4[m, n]
p1[m_, n_]:=Sum[p2[m, n, y], {y, 1, m-1}]
p2[m_, n_, y_]:=If[GCD[y, n-1]==1, m-y, 0]
p[i_]:=If[i>0, i, 0]
p2[m_, n_, x_, y_]:=p2[m, n, x, y]=(n-x)*(m-y)-p[n-2*x]*p[m-2*y]
p3[m_, n_, x_, y_]:=p2[m, n, x, y]-2*p2[m, n-1, x, y]+p2[m, n-2, x, y]
p4[m_, n_]:=p4[m, n]=If[Mod[n, 2]==0, 0, p42[m, n]]
p42[m_, n_]:=p42[m, n]=Sum[p43[m, n, y], {y, 1, m-1}]
p43[m_, n_, y_]:=If[GCD[(n-1)/2, y]==1, p3[m, n, (n-1)/2, y], 0]
Table[a[n], {n, 0, 41}]
CROSSREFS
Sequence in context: A229274 A044140 A044521 * A260517 A235878 A015705
KEYWORD
nonn
AUTHOR
Seppo Mustonen, May 28 2009
STATUS
approved