login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160847
Number of lines through at least 2 points of a 7 X n grid of points.
2
0, 1, 51, 100, 181, 274, 405, 536, 709, 894, 1111, 1330, 1591, 1858, 2167, 2482, 2825, 3180, 3577, 3974, 4413, 4860, 5339, 5824, 6351, 6884, 7455, 8032, 8641, 9262, 9925, 10584, 11285, 11998, 12743, 13494, 14283, 15078, 15915, 16758, 17633, 18516
OFFSET
0,3
FORMULA
a(n) = (1/2)*(f(m,n,1)-f(m,n,2)) where f(m,n,k) = Sum((n - |kx|)*(m - |ky|)); -n < kx <n, -m < ky <m, (x,y)=1, m=7.
For another more efficient formula, see Mathematica code below.
Empirical g.f.: -x*(7*x^14 + 8*x^12 + 43*x^11 + 50*x^10 + 117*x^9 + 135*x^8 + 204*x^7 + 173*x^6 + 211*x^5 + 142*x^4 + 131*x^3 + 50*x^2 + 50*x + 1) / ((x - 1)^3*(x + 1)*(x^2 - x + 1)*(x^2 + 1)*(x^2 + x + 1)*(x^4 + x^3 + x^2 + x + 1)). - Colin Barker, May 24 2015
MATHEMATICA
m=7;
a[0]=0; a[1]=1;
a[2]=m^2+2;
a[3]=2*m^2+3-Mod[m, 2];
a[n_]:=a[n]=2*a[n-1]-a[n-2]+2*p1[m, n]+2*p4[m, n]
p1[m_, n_]:=Sum[p2[m, n, y], {y, 1, m-1}]
p2[m_, n_, y_]:=If[GCD[y, n-1]==1, m-y, 0]
p[i_]:=If[i>0, i, 0]
p2[m_, n_, x_, y_]:=p2[m, n, x, y]=(n-x)*(m-y)-p[n-2*x]*p[m-2*y]
p3[m_, n_, x_, y_]:=p2[m, n, x, y]-2*p2[m, n-1, x, y]+p2[m, n-2, x, y]
p4[m_, n_]:=p4[m, n]=If[Mod[n, 2]==0, 0, p42[m, n]]
p42[m_, n_]:=p42[m, n]=Sum[p43[m, n, y], {y, 1, m-1}]
p43[m_, n_, y_]:=If[GCD[(n-1)/2, y]==1, p3[m, n, (n-1)/2, y], 0]
Table[a[n], {n, 0, 41}]
CROSSREFS
Sequence in context: A229274 A044140 A044521 * A260517 A235878 A015705
KEYWORD
nonn
AUTHOR
Seppo Mustonen, May 28 2009
STATUS
approved