login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A044140
Numbers k such that substring "02" occurs in the base-7 representation of k but not of k-1.
0
51, 100, 149, 198, 247, 296, 345, 357, 394, 443, 492, 541, 590, 639, 688, 700, 737, 786, 835, 884, 933, 982, 1031, 1043, 1080, 1129, 1178, 1227, 1276, 1325, 1374, 1386, 1423, 1472, 1521, 1570, 1619, 1668, 1717, 1729, 1766, 1815
OFFSET
1,1
FORMULA
Conjectures from Colin Barker, May 20 2019: (Start)
G.f.: x*(51 + 49*x + 49*x^2 + 49*x^3 + 49*x^4 + 49*x^5 + 49*x^6 + 12*x^7 - 14*x^8) / ((1 - x)^2*(1 + x)*(1 + x^2)*(1 + x^4)).
a(n) = a(n-1) + a(n-8) - a(n-9) for n>9.
(End)
MATHEMATICA
okQ[n_]:=MemberQ[Partition[IntegerDigits[n, 7], 2, 1], {0, 2}] && !MemberQ[Partition[IntegerDigits[n-1, 7], 2, 1], {0, 2}]; Select[Range[2000], okQ] (* Harvey P. Dale, Feb 02 2011 *)
SequencePosition[Table[If[SequenceCount[IntegerDigits[n, 7], {0, 2}]>0, 1, 0], {n, 2000}], {0, 1}][[All, 2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 09 2018 *)
CROSSREFS
Cf. A007093 (numbers in base 7).
Sequence in context: A049328 A075894 A229274 * A044521 A160847 A260517
KEYWORD
nonn,base
STATUS
approved