login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075894
Average of four successive primes squared, (prime(n)^2 + prime(n+1)^2 + prime(n+2)^2 + prime(n+3)^2)/4, n>=2.
1
51, 91, 157, 235, 337, 505, 673, 925, 1213, 1465, 1777, 2137, 2587, 3055, 3625, 4183, 4645, 5275, 5875, 6595, 7615, 8605, 9535, 10417, 11035, 11677, 13057, 14485, 16207, 17845, 19363, 20773, 22243, 24055, 25477, 27259, 29107, 30655, 32803
OFFSET
2,1
COMMENTS
Unlike the average of four successive primes, the average of four successive primes squared is integer for all n>=2. [corrected by Zak Seidov, Jul 07 2017]
LINKS
FORMULA
a(n) = (prime(n)^2 + prime(n+1)^2 + prime(n+2)^2 + prime(n+3)^2)/4, n>=2.
EXAMPLE
a(2)=51 because (prime(2)^2 + prime(3)^2 + prime(4)^2 + prime(5)^2)/4 = (3^2 + 5^2 + 7^2 + 11^2)/4 = 51.
MATHEMATICA
Mean[#]&/@(Partition[Prime[Range[2, 50]], 4, 1]^2) (* Harvey P. Dale, Dec 14 2011 *)
Table[(Prime[n]^2 + Prime[n+1]^2 + Prime[n+2]^2 + Prime[n+3]^2)/4, {n, 2, 50}] (* Vincenzo Librandi, Jul 07 2017 *)
PROG
(Magma) [(NthPrime(n)^2+NthPrime(n+1)^2+NthPrime(n+2)^2+ NthPrime(n+3)^2)/4: n in [2..50]]; // Vincenzo Librandi, Jul 07 2017
(PARI) a(n, p=prime(n))=my(q=nextprime(p+1), r=nextprime(q+1), s=nextprime(r+1)); norml2([p, q, r, s])/4 \\ Charles R Greathouse IV, Jul 07 2017
(PARI) first(n)=my(p=primes(n+3)); vector(n-1, i, (p[i+1]^2 + p[i+2]^2 + p[i+3]^2 + p[i+4]^2)/4) \\ Charles R Greathouse IV, Jul 07 2017
CROSSREFS
Sequence in context: A351026 A020180 A049328 * A229274 A044140 A044521
KEYWORD
easy,nonn
AUTHOR
Zak Seidov, Oct 17 2002
STATUS
approved