Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 08 2022 08:45:07
%S 51,91,157,235,337,505,673,925,1213,1465,1777,2137,2587,3055,3625,
%T 4183,4645,5275,5875,6595,7615,8605,9535,10417,11035,11677,13057,
%U 14485,16207,17845,19363,20773,22243,24055,25477,27259,29107,30655,32803
%N Average of four successive primes squared, (prime(n)^2 + prime(n+1)^2 + prime(n+2)^2 + prime(n+3)^2)/4, n>=2.
%C Unlike the average of four successive primes, the average of four successive primes squared is integer for all n>=2. [corrected by _Zak Seidov_, Jul 07 2017]
%H Harvey P. Dale, <a href="/A075894/b075894.txt">Table of n, a(n) for n = 2..1000</a>
%F a(n) = (prime(n)^2 + prime(n+1)^2 + prime(n+2)^2 + prime(n+3)^2)/4, n>=2.
%e a(2)=51 because (prime(2)^2 + prime(3)^2 + prime(4)^2 + prime(5)^2)/4 = (3^2 + 5^2 + 7^2 + 11^2)/4 = 51.
%t Mean[#]&/@(Partition[Prime[Range[2,50]],4,1]^2) (* _Harvey P. Dale_, Dec 14 2011 *)
%t Table[(Prime[n]^2 + Prime[n+1]^2 + Prime[n+2]^2 + Prime[n+3]^2)/4, {n, 2, 50}] (* _Vincenzo Librandi_, Jul 07 2017 *)
%o (Magma) [(NthPrime(n)^2+NthPrime(n+1)^2+NthPrime(n+2)^2+ NthPrime(n+3)^2)/4: n in [2..50]]; // _Vincenzo Librandi_, Jul 07 2017
%o (PARI) a(n,p=prime(n))=my(q=nextprime(p+1),r=nextprime(q+1),s=nextprime(r+1)); norml2([p,q,r,s])/4 \\ _Charles R Greathouse IV_, Jul 07 2017
%o (PARI) first(n)=my(p=primes(n+3)); vector(n-1,i, (p[i+1]^2 + p[i+2]^2 + p[i+3]^2 + p[i+4]^2)/4) \\ _Charles R Greathouse IV_, Jul 07 2017
%K easy,nonn
%O 2,1
%A _Zak Seidov_, Oct 17 2002