Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 May 24 2022 11:51:57
%S 1,1,-6,33,-162,666,-1836,-2079,79542,-741474,4907628,-24837030,
%T 82449900,53319060,-3741922008,38613958497,-274566158298,
%U 1475669401398,-5211777090564,-2356585871778,240686500011588,-2593621485808596,19047621883804056,-105353643788834598
%N Expansion of g.f.: (-1 + sqrt(1+12*x+48*x^2)) / (6*x).
%C This sequence is the member (q=-3) of a class of generalized Catalan numbers (see A000108), with g.f. (1-sqrt(1-q*4*x*(1-(q-1)*x)))/(2*q*x), q<>0.
%H Fung Lam, <a href="/A240880/b240880.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: (-1 + sqrt(1+12*x+48*x^2)) / (6*x).
%F D-finite with recurrence: (n+3)*a(n+2)+6*(2*n+3)*a(n+1)+48*n*a(n)=0, a(0)=1, a(1)=1.
%F Lim sup n->infinity |a(n)|^(1/n) = 4*sqrt(3) = 6.9282... - _Vaclav Kotesovec_, May 02 2014
%F a(n) ~ 3^(n/2-1)*4^n / (n^(3/2)*sqrt(Pi)) * (sqrt(3)*cos(5*Pi*n/6) + 3*sin(5*Pi*n/6) - (15*sqrt(3)*cos(5*Pi*n/6) + 9*sin(5*Pi*n/6))/(8*n)). - _Vaclav Kotesovec_, May 02 2014
%t CoefficientList[Series[(Sqrt[1+12x+48x^2]-1)/(6x),{x,0,30}],x] (* _Harvey P. Dale_, May 24 2022 *)
%Y Cf. A000108, A258723.
%K sign,easy
%O 0,3
%A _Fung Lam_, May 01 2014