login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301273
Numerator of mean of first n primes.
6
2, 5, 10, 17, 28, 41, 58, 77, 100, 129, 160, 197, 238, 281, 328, 381, 440, 167, 568, 639, 712, 791, 38, 321, 212, 1161, 1264, 1371, 1480, 531, 1720, 1851, 1988, 2127, 2276, 809, 2584, 2747, 2914, 3087, 3266, 1149, 3638, 3831, 4028, 4227, 4438, 4661
OFFSET
1,1
LINKS
Joel E. Cohen, Statistics of Primes (and Probably Twin Primes) Satisfy Taylor’s Law from Ecology, The American Statistician, 70 (2016), 399-404.
EXAMPLE
The means are 2, 5/2, 10/3, 17/4, 28/5, 41/6, 58/7, 77/8, 100/9, 129/10, 160/11, 197/12, 238/13, 281/14, 328/15, 381/16, 440/17, 167/6, 568/19, 639/20, 712/21, 791/22, 38, 321/8, 212/5, ...
MAPLE
m := n -> add(ithprime(j), j=1..n)/n;
m1:=[seq(m(n), n=1..100)];
m2:=map(numer, m1); # A301273
m3:=map(denom, m1); # A301274
m4:=map(round, m1); # A301277
MATHEMATICA
a[n_] := Prime @ Range[n] // Mean // Numerator;
a /@ Range[100] (* Jean-François Alcover, Nov 16 2019 *)
PROG
(Python)
from fractions import Fraction
from sympy import prime
A301273_list, mu = [], Fraction(0)
for i in range(1, 10001):
mu += (prime(i)-mu)/i
A301273_list.append(mu.numerator) # Chai Wah Wu, Mar 22 2018
CROSSREFS
Mean and variance of primes: A301273/A301274, A301275/A301276, A301277, A273462.
Sequence in context: A329864 A174910 A363072 * A007504 A172059 A172435
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Mar 18 2018
STATUS
approved