login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301275
Numerator of variance of first n primes.
6
0, 1, 7, 59, 64, 581, 649, 2287, 1001, 2443, 5669, 17915, 6665, 36637, 3529, 22413, 22813, 13065, 75865, 191819, 58778, 289013, 7627, 141973, 5213, 628001, 370333, 96211, 249436, 381167, 672727, 1565639, 453767, 691587, 1194917, 301867, 770294
OFFSET
1,3
COMMENTS
Variance here is the sample variance unbiased estimator. - Chai Wah Wu, Mar 22 2018
LINKS
Joel E. Cohen, Statistics of Primes (and Probably Twin Primes) Satisfy Taylor’s Law from Ecology, The American Statistician, 70 (2016), 399-404.
EXAMPLE
The variances are 0, 1/2, 7/3, 59/12, 64/5, 581/30, 649/21, 2287/56, 1001/18, 2443/30, 5669/55, 17915/132, 6665/39, 36637/182, 3529/15, 22413/80, 22813/68, 13065/34, 75865/171, 191819/380, 58778/105, 289013/462, 7627/11, 141973/184, 5213/6, 628001/650, ...
MAPLE
v := n -> 1/(n-1) * add((ithprime(i) add(ithprime(j), j=1..n)/n)^2, i=1..n );
v1:= [0, seq(v(n), n=2..70)];
MATHEMATICA
a[n_] := If[n == 1, 0, Variance[Prime[Range[n]]] // Numerator];
a /@ Range[100] (* Jean-François Alcover, Oct 27 2019 *)
PROG
(Python)
from fractions import Fraction
from sympy import prime
mu, variance = Fraction(prime(1)), Fraction(0)
A301275_list = [variance.numerator]
for i in range(2, 10001):
datapoint = prime(i)
newmu = mu+(datapoint-mu)/i
variance = (variance*(i-2) + (datapoint-mu)*(datapoint-newmu))/(i-1)
mu = newmu
A301275_list.append(variance.numerator) # Chai Wah Wu, Mar 22 2018
CROSSREFS
Mean and variance of primes: A301273/A301274, A301275/A301276, A301277, A273462.
Sequence in context: A005332 A132546 A210404 * A366213 A061424 A140371
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Mar 18 2018
STATUS
approved