login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005332
Certain subgraphs of a directed graph.
(Formerly M4438)
1
1, 7, 58, 838, 25171, 1610977, 214838128, 58540023808, 32208188445841, 35543124039418147, 78391002506394742198, 344921660620756227029578, 3025372940760065880037836511, 52886001393832278158415800800117, 1842588406743140390123203185385824268, 127974225758895121562137768141145597226148
OFFSET
2,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
E. Andresen, K. Kjeldsen, On certain subgraphs of a complete transitively directed graph, Discrete Math. 14 (1976), no. 2, 103-119.
FORMULA
a(n) = Sum_{i=0..n-2} (C(n-1, i) * p(n-1-i) * 2^i * Sum_{j=0..n-2-i} (-1)^j * (n-1-i-j) / p(j)) where p(n) = Product_{k=1..n} (2^k-1). - Sean A. Irvine, May 10 2016
MATHEMATICA
p[n_]:=Product[2^k-1, {k, n}]; a[n_]:=Sum[(Binomial[n-1, i] * p[n-1-i] * 2^i*Sum [(-1)^j*(n-1-i-j)/p[j], {j, 0, n-2-i}] ), {i, 0, n-2}]; Table[a[n], {n, 2, 17}] (* Stefano Spezia, Sep 07 2022 *)
PROG
(PARI) p(n) = prod(k=1, n, 2^k-1);
a(n) = sum(i=0, n-2, binomial(n-1, i) * p(n-1-i) * 2^i * sum(j=0, n-2-i, (-1)^j * (n-1-i-j) / p(j))); \\ Michel Marcus, May 10 2016
CROSSREFS
Cf. A005330.
Sequence in context: A123766 A377331 A362772 * A132546 A210404 A301275
KEYWORD
nonn,changed
EXTENSIONS
More terms from Sean A. Irvine, May 10 2016
STATUS
approved