OFFSET
2,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
E. Andresen, K. Kjeldsen, On certain subgraphs of a complete transitively directed graph, Discrete Math. 14 (1976), no. 2, 103-119.
FORMULA
a(n) = Sum_{i=0..n-2} (C(n-1, i) * p(n-1-i) * 2^i * Sum_{j=0..n-2-i} (-1)^j * (n-1-i-j) / p(j)) where p(n) = Product_{k=1..n} (2^k-1). - Sean A. Irvine, May 10 2016
MATHEMATICA
p[n_]:=Product[2^k-1, {k, n}]; a[n_]:=Sum[(Binomial[n-1, i] * p[n-1-i] * 2^i*Sum [(-1)^j*(n-1-i-j)/p[j], {j, 0, n-2-i}] ), {i, 0, n-2}]; Table[a[n], {n, 2, 17}] (* Stefano Spezia, Sep 07 2022 *)
PROG
(PARI) p(n) = prod(k=1, n, 2^k-1);
a(n) = sum(i=0, n-2, binomial(n-1, i) * p(n-1-i) * 2^i * sum(j=0, n-2-i, (-1)^j * (n-1-i-j) / p(j))); \\ Michel Marcus, May 10 2016
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
EXTENSIONS
More terms from Sean A. Irvine, May 10 2016
STATUS
approved