Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4438 #25 Dec 28 2024 02:01:15
%S 1,7,58,838,25171,1610977,214838128,58540023808,32208188445841,
%T 35543124039418147,78391002506394742198,344921660620756227029578,
%U 3025372940760065880037836511,52886001393832278158415800800117,1842588406743140390123203185385824268,127974225758895121562137768141145597226148
%N Certain subgraphs of a directed graph.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H E. Andresen, K. Kjeldsen, <a href="http://dx.doi.org/10.1016/0012-365X(76)90054-6">On certain subgraphs of a complete transitively directed graph</a>, Discrete Math. 14 (1976), no. 2, 103-119.
%F a(n) = Sum_{i=0..n-2} (C(n-1, i) * p(n-1-i) * 2^i * Sum_{j=0..n-2-i} (-1)^j * (n-1-i-j) / p(j)) where p(n) = Product_{k=1..n} (2^k-1). - _Sean A. Irvine_, May 10 2016
%t p[n_]:=Product[2^k-1, {k,n}]; a[n_]:=Sum[(Binomial[n-1, i] * p[n-1-i] * 2^i*Sum [(-1)^j*(n-1-i-j)/p[j], {j,0,n-2-i}] ), {i,0,n-2}]; Table[a[n], {n,2,17}] (* _Stefano Spezia_, Sep 07 2022 *)
%o (PARI) p(n) = prod(k=1, n, 2^k-1);
%o a(n) = sum(i=0, n-2, binomial(n-1, i) * p(n-1-i) * 2^i * sum(j=0, n-2-i, (-1)^j * (n-1-i-j) / p(j))); \\ _Michel Marcus_, May 10 2016
%Y Cf. A005330.
%K nonn,changed
%O 2,2
%A _N. J. A. Sloane_
%E More terms from _Sean A. Irvine_, May 10 2016